Share:
Share this content in WeChat
X
Review
Research progress of fMRI in the neural mechanisms linking the FTO gene to obesity
ZHANG Xiaolu  LIU Ao  LIN Xinbei  SUN Yongbing  LI Xin  ZOU Zhi  LI Zhonglin  WU Xiaoling  WANG Yong  MA Xiao  HAO Yibin  LIU Min  LI Yongli 

DOI:10.12015/issn.1674-8034.2025.12.022.


[Abstract] Obesity has become a global public health issue, exerting significant impacts on both individuals and society. The development of obesity results from the interaction of genetic and environmental factors, with genetic factors playing a significant role in determining susceptibility to obesity. The fat mass and obesity-associated (FTO) gene, as the first obesity-related gene identified through Genome-Wide Association Studies (GWAS), has garnered extensive attention. Meanwhile, functional magnetic resonance imaging (fMRI) technology, a non-invasive imaging method, also plays a crucial role in the study of the neural mechanisms underlying obesity. This article aims to review the application of the FTO gene and fMRI technology in exploring obesity treatment, with the hope of providing new insights into the prevention and treatment of obesity. It also analyses the limitations of current research and outlines future research directions.
[Keywords] obesity;fat mass and obesity-associated gene;neuroimaging;functional magnetic resonance imaging;magnetic resonance imaging;neural mechanism

ZHANG Xiaolu1   LIU Ao1   LIN Xinbei2   SUN Yongbing1   LI Xin3   ZOU Zhi2   LI Zhonglin2   WU Xiaoling4   WANG Yong5   MA Xiao6   HAO Yibin7   LIU Min8   LI Yongli9*  

1 Department of Medical Imaging, Zhengzhou University People's Hospital, Zhengzhou 450003, China

2 Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China

3 Department of Medical Imaging, Henan University People's Hospital/Henan Provincial People's Hospital, Zhengzhou 450003, China

4 Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou 450003, China

5 Department of General Practice, Henan Provincial People's Hospital, Zhengzhou 450003, China

6 Medical Examination Center, China-Japan Friendship Hospital, Beijing 100029, China

7 Hospital Offices, Henan Provincial People's Hospital, Zhengzhou 450003, China

8 Department of Hypertension, Henan Provincial People's Hospital, Zhengzhou 450003, China

9 Department of Health Management, Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Chronic Disease, Zhengzhou 450003, China

Corresponding author: LI Y L, E-mail: shyliyongli@126.com

Conflicts of interest   None.

Received  2025-08-31
Accepted  2025-12-05
DOI: 10.12015/issn.1674-8034.2025.12.022
DOI:10.12015/issn.1674-8034.2025.12.022.

[1]
SØRENSEN T I A. Forecasting the global obesity epidemic through 2050[J]. Lancet, 2025, 405(10481): 756-757. DOI: 10.1016/s0140-6736(25)00260-0.
[2]
KONG Y, YANG H, NIE R, et al. Obesity: pathophysiology and therapeutic interventions[J/OL]. Mol Biomed, 2025, 6(1): 25 [2025-08-31]. https://doi.org/10.1186/s43556-025-00264-9. DOI: 10.1186/s43556-025-00264-9.
[3]
RONG F. Cohort study on influence of birth weight and environmental factors on overweight and obesity for children and adolescents[J]. Shanghai: Fudan University, 2012.
[4]
LIU X, TUREL O, XIAO Z, et al. Neural differences of food-specific inhibitory control in people with healthy vs higher BMI[J/OL]. Appetite, 2023, 188: 106759 [2025-08-31]. https://doi.org/10.1016/j.appet.2023.106759. DOI: 10.1016/j.appet.2023.106759.
[5]
HUANG C, CHEN W, WANG X. Studies on the fat mass and obesity-associated (FTO) gene and its impact on obesity-associated diseases[J]. Genes Dis, 2023, 10(6): 2351-2365. DOI: 10.1016/j.gendis.2022.04.014.
[6]
SZMYGIN H, SZMYGIN M, CHEDA M, et al. Current Insights into the Potential Role of fMRI in Discovering the Mechanisms Underlying Obesity[J/OL]. J Clin Med, 2023, 12(13): 4379 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/37445414/. DOI: 10.3390/jcm12134379.
[7]
YANG X, SHEN M T, GUO J. Progress of the genetics of obesity: FTO[J]. Chinese Bulletin of Life Sciences, 2011, 23(5): 459-464.
[8]
FRAYLING T M, TIMPSON N J, WEEDON M N, et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity[J]. Science, 2007, 316(5826): 889-894. DOI: 10.1126/science.1141634.
[9]
SALUM K C R, ASSIS I S D S, KOPKE Ú D A, et al. FTO rs17817449 Variant Increases the Risk of Severe Obesity in a Brazilian Cohort: A Case-Control Study[J]. Diabetes, Metabolic Syndrome and Obesity, 2025, 18: 283-303. DOI: 10.2147/DMSO.S451401.
[10]
SONG Y, LI S, LIU H, et al. Higher risk of metabolic syndrome in children and adolescents and polymorphisms in the fat mass and obesity-associated gene: a systematic review and meta-analysis[J/OL]. Pediatr Res, 2025 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/40169741/. DOI: 10.1038/s41390-025-04020-1.
[11]
SHARMA T, BADARUDDOZA B. Genetic association of FTO gene polymorphisms with obesity and its related phenotypes: A case-control study[J]. J Cardiovasc Thorac Res, 2024, 16(2): 102-112. DOI: 10.34172/jcvtr.33038.
[12]
ISGIN-ATICI K, ALSULAMI S, TURAN-DEMIRCI B, et al. FTO gene-lifestyle interactions on serum adiponectin concentrations and central obesity in a Turkish population[J]. Int J Food Sci Nutr, 2021, 72(3): 375-385. DOI: 10.1080/09637486.2020.1802580.
[13]
GOH Y, CHOI J H. Genetic variation rs1121980 in the fat mass and obesity-associated gene (FTO) is associated with dietary intake in Koreans[J/OL]. Food Nutr Res, 2022, 66 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/36590860/. DOI: 10.29219/fnr.v66.8059.
[14]
NAQEEB H, SEHAR B, SIRAJ S, et al. Association of anthropometric indices with rs9939609 FTO gene polymorphism among overweight/obese women with breast cancer: a case-control study[J/OL]. Front Nutr, 2025, 12: 1548340 [2025-08-31]. https://doi.org/10.3389/fnut.2025.1548340. DOI: 10.3389/fnut.2025.1548340.
[15]
SHILL L C, ALAM M R. Crosstalk between FTO gene polymorphism (rs9939609) and obesity-related traits among Bangladeshi population[J/OL]. Health Sci Rep, 2023, 6(7): e1414 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/37431487/. DOI: 10.1002/hsr2.1414.
[16]
NING M, CHEN L, WANG Y, et al. The Role of FTO Risk Haplotype in Overweight/Obesity and Lipid Parameters-Results From the Central China Population Study[J/OL]. Int J Endocrinol, 2024, 2024: 8062791 [2025-08-31]. https://doi.org/10.1155/2024/8062791. DOI: 10.1155/2024/8062791.
[17]
ZHU H, YI X, HE M, et al. Exploring the interplay of genetic variants and environmental factors in childhood obesity: A systematic review and meta-analysis[J/OL]. Metabolism, 2025, 170: 156303 [2025-08-31]. https://doi.org/10.1016/j.metabol.2025.156303. DOI: 10.1016/j.metabol.2025.156303.
[18]
HU W. Research Progress on the Relationship Between Genetic Polymorphisms and Metabolic Indicators in Childhood Obesity[J]. Maternal and Child Health Care of China, 2024, 39(8): 1548-1552. DOI: 10.19829/j.zgfybj.issn.1001-4411.2024.08.050.
[19]
DUARTE M R, DE MORAES HEREDIA A S, ARANTES V C, et al. The interaction of the FTO gene and age interferes with macronutrient and vitamin intake in women with morbid obesity[J/OL]. Exp Gerontol, 2024, 193: 112463 [2025-08-31]. https://doi.org/10.1016/j.exger.2024.112463. DOI: 10.1016/j.exger.2024.112463.
[20]
BROWN J E, MORTON L, BRAAKHUIS A J. Exploring genetic modifiers influencing adult eating behaviour: A scoping review[J/OL]. Appetite, 2025, 214: 108193 [2025-08-31]. https://doi.org/10.1016/j.appet.2025.108193. DOI: 10.1016/j.appet.2025.108193.
[21]
FREDRIKSSON R, HäGGLUND M, OLSZEWSKI P K, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain[J]. Endocrinology, 2008, 149(5): 2062-2071. DOI: 10.1210/en.2007-1457.
[22]
WOODS S C, D'ALESSIO D A. Central control of body weight and appetite[J]. J Clin Endocrinol Metab, 2008, 93(11Suppl 1): S37-S50. DOI: 10.1210/jc.2008-1630.
[23]
TEYMOORI F, FARHADNEJAD H, NOROUZZADEH M, et al. The relationship between dietary branched-chain and aromatic amino acids with the regulation of leptin and FTO genes in adipose tissue of patients undergoing abdominal surgery[J/OL]. Amino Acids, 2025, 57(1): 8 [2025-08-31]. https://doi.org/10.1007/s00726-024-03441-2. DOI: 10.1007/s00726-024-03441-2.
[24]
LIU S, SONG S, WANG S, et al. Hypothalamic FTO promotes high-fat diet-induced leptin resistance in mice through increasing CX3CL1 expression[J/OL]. J Nutr Biochem, 2024, 123: 109512 [2025-08-31]. https://doi.org/10.1016/j.jnutbio.2023.109512. DOI: 10.1016/j.jnutbio.2023.109512.
[25]
EDWIN THANARAJAH S, HANSSEN R, MELZER C, et al. Increased meso-striatal connectivity mediates trait impulsivity in FTO variant carriers[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1130203 [2025-08-31]. https://doi.org/10.3389/fendo.2023.1130203. DOI: 10.3389/fendo.2023.1130203.
[26]
KOHNO D, KAWABATA-IWAKAWA R, ICHINOSE S, et al. FTO promotes weight gain via altering Kif1a splicing and axonal vesicle trafficking in AgRP neurons[J]. Embo J, 2025, 44(18): 4919-4961. DOI: 10.1038/s44318-025-00503-3.
[27]
BLAUW L L, NOORDAM R, TROMPET S, et al. Genetic variation in the obesity gene FTO is not associated with decreased fat oxidation: the NEO study[J]. Int J Obes (Lond), 2017, 41(10): 1594-1600. DOI: 10.1038/ijo.2017.146.
[28]
OLMEDO L, LUNA F J, ZUBRZYCKI J, et al. Associations Between rs9939609 FTO Polymorphism With Nutrient and Food Intake and Adherence to Dietary Patterns in an Urban Argentinian Population[J/OL]. J Acad Nutr Diet, 2024, 124(7): 874-882.e874 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/38181881/. DOI: 10.1016/j.jand.2024.01.001.
[29]
POOSRI S, BOONYUEN U, CHUPEERACH C, et al. Association of FTO variants rs9939609 and rs1421085 with elevated sugar and fat consumption in adult obesity[J/OL]. Sci Rep, 2024, 14(1): 25618 [2025-08-31]. https://doi.org/10.1038/s41598-024-77004-6. DOI: 10.1038/s41598-024-77004-6.
[30]
SPEAKMAN J R. The 'Fat Mass and Obesity Related' (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance[J]. Curr Obes Rep, 2015, 4(1): 73-91. DOI: 10.1007/s13679-015-0143-1.
[31]
PONCE-GONZALEZ J G, MARTíNEZ-ÁVILA Á, VELáZQUEZ-DíAZ D, et al. Impact of the FTO Gene Variation on Appetite and Fat Oxidation in Young Adults[J/OL]. Nutrients, 2023, 15(9): 2037 [2025-08-31]. https://doi.org/10.3390/nu15092037. DOI: 10.3390/nu15092037.
[32]
AMIN U S M, RAHMAN T A, HASAN M, et al. Type 2 diabetes linked FTO gene variant rs8050136 is significantly associated with gravidity in gestational diabetes in a sample of Bangladeshi women: Meta-analysis and case-control study[J/OL]. PLoS One, 2023, 18(11): e0288318 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/38033012/. DOI: 10.1371/journal.pone.0288318.
[33]
ZHANG Y, CHEN L, ZHU J, et al. Minor alleles of FTO rs9939609 and rs17817449 polymorphisms confer a higher risk of type 2 diabetes mellitus and dyslipidemia, but not coronary artery disease in a Chinese Han population[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1249070 [2025-08-31]. https://doi.org/10.3389/fendo.2023.1249070. DOI: 10.3389/fendo.2023.1249070.
[34]
XU Z Y, JING X, XIONG X D. Emerging Role and Mechanism of the FTO Gene in Cardiovascular Diseases[J/OL]. Biomolecules, 2023, 13(5): 850 [2025-08-31]. https://doi.org/10.3390/biom13050850. DOI: 10.3390/biom13050850.
[35]
SMALL A M, PELOSO G M, LINEFSKY J, et al. Multiancestry Genome-Wide Association Study of Aortic Stenosis Identifies Multiple Novel Loci in the Million Veteran Program[J]. Circulation, 2023, 147(12): 942-955. DOI: 10.1161/circulationaha.122.061451.
[36]
GHOLAMI M. FTO is a major genetic link between breast cancer, obesity, and diabetes[J]. Breast Cancer Res Treat, 2024, 204(1): 159-169. DOI: 10.1007/s10549-023-07188-4.
[37]
MONTAZERI F, HATAMI H, FATHI S, et al. FTO genotype was associated with breast cancer in HER2 negative patients[J]. Clin Nutr ESPEN, 2022, 49: 495-498. DOI: 10.1016/j.clnesp.2022.02.122.
[38]
GHOLAMALIZADEH M, JONOUSH M, MOBARAKEH K A, et al. The effects of FTO gene rs9939609 polymorphism on the association between colorectal cancer and dietary intake[J/OL]. Front Nutr, 2023, 10: 1215559 [2025-08-31]. https://doi.org/10.3389/fnut.2023.1215559. DOI: 10.3389/fnut.2023.1215559.
[39]
ABDOLLAHI S, HASANPOUR ARDEKANIZADEH N, POORHOSSEINI S M, et al. Unraveling the Complex Interactions between the Fat Mass and Obesity-Associated (FTO) Gene, Lifestyle, and Cancer[J]. Adv Nutr, 2022, 13(6): 2406-2419. DOI: 10.1093/advances/nmac101.
[40]
DRELICH-ZBROJA A, MATUSZEK M, KACZOR M, et al. Functional Magnetic Resonance Imaging and Obesity-Novel Ways to Seen the Unseen[J/OL]. J Clin Med, 2022, 11(12): 3561 [2025-08-31]. https://doi.org/10.3390/jcm11123561. DOI: 10.3390/jcm11123561.
[41]
SONG S, LI Q, JIANG Y, et al. Do Overweight People Have Worse Cognitive Flexibility? Cues-Triggered Food Craving May Have a Greater Impact[J/OL]. Nutrients, 2022, 14(2): 240 [2025-08-31]. https://doi.org/10.3390/nu14020240. DOI: 10.3390/nu14020240.
[42]
SYAN S K, MCINTYRE-WOOD C, MINUZZI L, et al. Dysregulated resting state functional connectivity and obesity: A systematic review[J]. Neurosci Biobehav Rev, 2021, 131: 270-292. DOI: 10.1016/j.neubiorev.2021.08.019.
[43]
ALABDULKADER S, AL-ALSHEIKH A S, MIRAS A D, et al. Obesity surgery and neural correlates of human eating behaviour: A systematic review of functional MRI studies[J/OL]. Neuroimage Clin, 2024, 41: 103563 [2025-08-31]. https://doi.org/10.1016/j.nicl.2024.103563. DOI: 10.1016/j.nicl.2024.103563.
[44]
PURSEY K M, STANWELL P, CALLISTER R J, et al. Neural Responses to Visual Food Cues According to Weight Status: A Systematic Review of Functional Magnetic Resonance Imaging Studies[J/OL]. Front Nutr, 2014, 1: 7 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/25988110/. DOI: 10.3389/fnut.2014.00007.
[45]
MARTIN C K, CARMICHAEL O T, CARNELL S, et al. Tirzepatide on ingestive behavior in adults with overweight or obesity: a randomized 6-week phase 1 trial[J]. Nat Med, 2025, 31(9): 3141-3150. DOI: 10.1038/s41591-025-03774-9.
[46]
STOPYRA M A, FRIEDERICH H C, LAVANDIER N, et al. Homeostasis and food craving in obesity: a functional MRI study[J]. Int J Obes (Lond), 2021, 45(11): 2464-2470. DOI: 10.1038/s41366-021-00920-4.
[47]
LI G, HU Y, ZHANG W, et al. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions[J]. Mol Psychiatry, 2023, 28(4): 1466-1479. DOI: 10.1038/s41380-023-02025-y.
[48]
LIU W, LI N, TANG D, et al. Multimodal Neuroimaging of Obesity: From Structural-Functional Mechanisms to Precision Interventions[J/OL]. Brain Sci, 2025, 15(5): 446 [2025-08-31]. https://doi.org/10.3390/brainsci15050446. DOI: 10.3390/brainsci15050446.
[49]
ZHAO J, MANZA P, GU J, et al. Contrasting dorsal caudate functional connectivity patterns between frontal and temporal cortex with BMI increase: link to cognitive flexibility[J]. Int J Obes (Lond), 2021, 45(12): 2608-2616. DOI: 10.1038/s41366-021-00929-9.
[50]
LUO W Q, LUO G H, ZHANG L K. Research progress on changes in brain networks in obese individuals[J]. Journal of Modern Medicine & Health, 2024, 40(8): 1353-1357. DOI: 10.3969/j.issn.1009-5519.2024.08.020.
[51]
WONDERLICH J A, BERSHAD M, STEINGLASS J E. Exploring Neural Mechanisms Related to Cognitive Control, Reward, and Affect in Eating Disorders: A Narrative Review of FMRI Studies[J]. Neuropsychiatr Dis Treat, 2021, 17: 2053-2062. DOI: 10.2147/ndt.S282554.
[52]
PURNELL J Q, LE ROUX C W. Hypothalamic control of body fat mass by food intake: The key to understanding why obesity should be treated as a disease[J]. Diabetes Obes Metab, 2024, 26Suppl 2: 3-12. DOI: 10.1111/dom.15478.
[53]
CHEN W, WANG H J, SHANG N N, et al. Moderate intensity treadmill exercise alters food preference via dopaminergic plasticity of ventral tegmental area-nucleus accumbens in obese mice[J]. Neuroscience Letters, 2017, 641: 56-61. DOI: 10.1016/j.neulet.2017.01.055.
[54]
LIU A, ZHOU J, SUN Y B, et al. Progress of research in neuroimaging changes and cognitive function assessment after bariatric metabolic surgery[J]. Chinese Journal of Obesity and Metabolic Diseases (Electronic Edition), 2023, 9(3): 203-208. DOI: 10.3877/cma.j.issn.2095-9605.2023.03.010.
[55]
ZHANG Y, JI G, XU M, et al. Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery[J]. International Journal of Obesity, 2016, 40(10): 1558-1565. DOI: 10.1038/ijo.2016.98.
[56]
ZEIGHAMI Y, ICETA S, DADAR M, et al. Spontaneous neural activity changes after bariatric surgery: A resting-state fMRI study[J/OL]. Neuroimage, 2021, 241: 118419 [2025-08-31]. https://doi.org/10.1016/j.neuroimage.2021.118419. DOI: 10.1016/j.neuroimage.2021.118419.
[57]
BERGEAT D, COQUERY N, GAUTIER Y, et al. Exploration of fMRI brain responses to oral sucrose after Roux-en-Y gastric bypass in obese yucatan minipigs in relationship with microbiota and metabolomics profiles[J]. Clin Nutr, 2023, 42(3): 394-410. DOI: 10.1016/j.clnu.2023.01.015.
[58]
WIEMERSLAGE L, NILSSON E K, SOLSTRAND DAHLBERG L, et al. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images[J]. Eur J Neurosci, 2016, 43(9): 1173-1180. DOI: 10.1111/ejn.13177.
[59]
THAPALIYA G, KUNDU P, JANSEN E, et al. FTO variation and early frontostriatal brain development in children[J]. Obesity (Silver Spring), 2024, 32(1): 156-165. DOI: 10.1002/oby.23926.
[60]
LUGO-CANDELAS C, PANG Y, LEE S, et al. Differences in brain structure and function in children with the FTO obesity-risk allele[J]. Obes Sci Pract, 2020, 6(4): 409-424. DOI: 10.1002/osp4.417.
[61]
WANG H, PENG H, ZHANG Z, et al. FTO-mediated m(6)A demethylation regulates IGFBP3 expression and AKT activation through IMP3-dependent P-body re-localisation in lung cancer[J/OL]. Clin Transl Med, 2025, 15(7): e70392 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/40621649/. DOI: 10.1002/ctm2.70392.
[62]
MA Y, ZHANG X, XUAN B, et al. Disruption of CerS6-mediated sphingolipid metabolism by FTO deficiency aggravates ulcerative colitis[J]. Gut, 2024, 73(2): 268-281. DOI: 10.1136/gutjnl-2023-330009.
[63]
WEI C, LUO Q, WANG B, et al. Generation of a FTO gene knockout human embryonic stem cell line using CRISPR/Cas9 editing[J/OL]. Stem Cell Res, 2021, 53: 102362 [2025-08-31]. https://doi.org/10.1016/j.scr.2021.102362. DOI: 10.1016/j.scr.2021.102362.
[64]
ZHANG H, LU P, TANG H L, et al. Valproate-Induced Epigenetic Upregulation of Hypothalamic Fto Expression Potentially Linked with Weight Gain[J]. Cell Mol Neurobiol, 2021, 41(6): 1257-1269. DOI: 10.1007/s10571-020-00895-2.
[65]
PENG S, XIAO W, JU D, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1[J/OL]. Science Translational Medicine, 2019, 11(488): eaau7116 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/30996080/. DOI: 10.1126/scitranslmed.aau7116.
[66]
MA D, LIU X, ZHANG X, et al. Discovery of the 2,3-Dihydrobenzopyrane-4-one as a Potent FTO Inhibitor against Obesity-Related Metabolic Diseases[J]. J Med Chem, 2025, 68(7): 7421-7440. DOI: 10.1021/acs.jmedchem.4c03124.

PREV Functional magnetic resonance imaging for evaluating the efficacy of high-intensity focused ultrasound in uterine fibroid treatment
NEXT Research progress on voxel-based and node-based analyses of functional connectivity alterations in ischemic post-stroke cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn