Share:
Share this content in WeChat
X
Review
Research progress on voxel-based and node-based analyses of functional connectivity alterations in ischemic post-stroke cognitive impairment
WANG Yang  LIU Xiao  LI Xiaoling  WANG Peng  HAN Shengwang 

DOI:10.12015/issn.1674-8034.2025.12.023.


[Abstract] Post-stroke cognitive impairment (PSCI) is a condition caused by stroke events leading to functional impairment in cognitive-related brain regions, with some cases progressing to dementia, severely affecting patients' daily lives. The pathological mechanism of PSCI is complex, involving various factors such as impaired brain reserve, blood-brain barrier disruption, gut microbiota dysbiosis, and reduced synaptic plasticity, leading to brain dysfunction; in-depth investigation of the central effects of PSCI is key to clinically developing scientific interventions and improving patients' quality of life. In recent years, functional magnetic resonance imaging (fMRI) technology has developed rapidly; resting-state fMRI (rs-fMRI), with its advantages of non-invasiveness and high temporal and spatial resolution, has become an important tool for evaluating the neural mechanisms of PSCI; PSCI exhibits widespread functional connectivity (FC) abnormalities, including reduced FC in some resting-state networks (RSN), altered cerebellar activity, and decreased dynamic functional network connectivity (dFNC); directed FC analysis shows enhanced information transmission in the contralateral brain regions and impaired RSN in the early stages of stroke. This paper uses voxel-based and node-based analysis methods for FC, systematically reviewing the literature on abnormal local FC, changes in brain network topological properties, and characteristics of directed FC dynamics in PSCI. It also identifies current research limitations and suggests future directions, aiming to inform early diagnosis and refine personalized treatment strategies.
[Keywords] ischemic post-stroke cognitive impairment;resting-state functional magnetic resonance imaging;magnetic resonance imaging;voxel;node;functional connectivity;functional network

WANG Yang1, 2   LIU Xiao3   LI Xiaoling1*   WANG Peng4   HAN Shengwang2, 5  

1 Department of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

2 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China

3 Department of Pediatrics, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

4 Department of Oncology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China

5 Third Rehabilitation Department, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China

Corresponding author: LI X L, E-mail: lixiaoling1525@163.com

Conflicts of interest   None.

Received  2025-08-31
Accepted  2025-11-29
DOI: 10.12015/issn.1674-8034.2025.12.023
DOI:10.12015/issn.1674-8034.2025.12.023.

[1]
WANG K, DONG Q, YU J T, et al. Expert consensus on post-stroke cognitive impairment management 2021[J]. Chinese Journal of Stroke, 2021, 16(4): 376-389. DOI: 10.3969/j.issn.1673-5765.2021.04.011.
[2]
LI Q, XIAO D, XU Y L. Research progress on resting-state functional magnetic resonance imaging of cognitive impairment after stroke[J]. Chinese Journal of Rehabilitation Medicine, 2022, 37(6): 850-854. DOI: 10.3969/j.issn.1001-1242.2022.06.025.
[3]
PANTONI L, SALVADORI E. Location of infarcts and post-stroke cognitive impairment[J]. Lancet Neurol, 2021, 20(6): 413-414. DOI: 10.1016/S1474-4422(21)00107-1.
[4]
WEI C X, CHEN X H, LU G D, et al. Based on data mining, a moxibustion intervention program and its application in patients with mild cognitive impairment of ischemic stroke were constructed.[J]. Journal of Nursing Management, 2025, 25(6): 461-467, 492. DOI: 10.3969/j.issn.1671-315x.2025.06.001.
[5]
BERNSTEIN-ELIAV M, TAVOR I. The Prediction of Brain Activity from Connectivity: Advances and Applications[J]. Neuroscientist, 2024, 30(3): 367-377. DOI: 10.1177/10738584221130974.
[6]
HE Y J, YAN S Z, LU J. Research progress of resting state functional magnetic resonance imaging in early diagnosis of Alzheimer's disease[J]. Chin J Magn Reson Imaging, 2024, 15(1): 173-178. DOI: 10.12015/issn.1674-8034.2024.01.029.
[7]
SCHRAMM S, BÖRNER C, REICHERT M, et al. Functional magnetic resonance imaging in migraine: A systematic review[J/OL]. Cephalalgia, 2023, 43(2): 3331024221128278 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/36751858. DOI: 10.1177/03331024221128278.
[8]
DAI Y N, ZHENG S, LIAO X, et al. Application of magnetic resonance imaging in the study of brain changes in stroke treated by acupuncture and moxibustion[J]. World Traditional Chinese Medicine, 2023, 18(11): 1628-1634. DOI: 10.3969/j.issn.1673-7202.2023.11.024.
[9]
BIJSTERBOSCH J D, BECKMANN C F, WOOLRICH M W, et al. The relationship between spatial configuration and functional connectivity of brain regions revisited[J/OL]. Elife, 2019, 8: e44890 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/31066676. DOI: 10.7554/eLife.44890.
[10]
CATALINO M P, YAO S, GREEN D L, et al. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging[J/OL]. Neurosurg Focus, 2020, 48(2): e9 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/32006946. DOI: 10.3171/2019.11.FOCUS19773.
[11]
JIMÉNEZ-RUIZ A, AGUILAR-FUENTES V, BECERRA-AGUIAR N N, et al. Vascular cognitive impairment and dementia: a narrative review[J/OL]. Dement Neuropsychol, 2024, 18: e20230116 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/39318380. DOI: 10.1590/1980-5764-DN-2023-0116.
[12]
GUO Y-S, YUAN M, HAN Y, et al. Effects of enriched environment on microglia and functional white matter recovery in rats with post stroke cognitive impairment[J/OL]. Neurochem Int, 2022, 154: 105295 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/35121010. DOI: 10.1016/j.neuint.2022.105295.
[13]
DRAGOS H M, STAN A, POPA L L, et al. Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction-A Study Protocol[J/OL]. Life (Basel), 2025, 15(1): 131 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/39860071. DOI: 10.3390/life15010131.
[14]
WANG H, ZHANG M, LI J, et al. Gut microbiota is causally associated with poststroke cognitive impairment through lipopolysaccharide and butyrate[J/OL]. J Neuroinflammation, 2022, 19(1): 76 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35379265. DOI: 10.1186/s12974-022-02435-9.
[15]
WU L, JIANG Y, XU W, et al. Potential Inflammatory Biomarkers and Differential Gut Microbiota in Cognitive Impairment After Ischemic Stroke[J]. Neuropsychiatr Dis Treat, 2025, 21: 965-972. DOI: 10.2147/NDT.S507156.
[16]
LU W, WEN J. Crosstalk Among Glial Cells in the Blood-Brain Barrier Injury After Ischemic Stroke[J]. Mol Neurobiol, 2024, 61(9): 6161-6174. DOI: 10.1007/s12035-024-03939-6.
[17]
CHI X, WANG L, LIU H, et al. Post-stroke cognitive impairment and synaptic plasticity: A review about the mechanisms and Chinese herbal drugs strategies[J/OL]. Front Neurosci, 2023, 17: 1123817 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/36937659. DOI: 10.3389/fnins.2023.1123817.
[18]
LI K X, LU M, CUI M X, et al. Astrocyte-neuron communication mediated by the Notch signaling pathway: focusing on glutamate transport and synaptic plasticity[J]. Neural Regen Res, 2023, 18(10): 2285-2290. DOI: 10.4103/1673-5374.369124.
[19]
CHANG X, YOU J, YANG P, et al. High-Serum Brain-Derived Neurotrophic Factor Levels Are Associated With Decreased Risk of Poststroke Cognitive Impairment[J]. Stroke, 2024, 55(3): 643-650. DOI: 10.1161/STROKEAHA.123.044698.
[20]
BIJSTERBOSCH J, SMITH S M, BECKMANN C. An introduction to resting state fMRI functional connectivity[M]. United Kingdom: Oxford University Press, 2017.
[21]
LEE T W. Framing major depressive disorder as a condition of network imbalance at the compartment level: a proof-of-concept study[J/OL]. Cereb Cortex, 2025, 35(4): bhaf089 [2025-05-20]. https://pubmed.ncbi.nlm.nih.gov/40302610. DOI: 10.1093/cercor/bhaf089.
[22]
DING J, QU X, CUI J, et al. Altered Spontaneous Brain Activity and Network Property in Patients With Congenital Monocular Blindness[J/OL]. Front Neurol, 2022, 13: 789655 [2025-08-26]. https://pubmed.ncbi.nlm.nih.gov/35280267. DOI: 10.3389/fneur.2022.789655.
[23]
ZHOU J, MA X, LI C, et al. Frequency-Specific Changes in the Fractional Amplitude of the Low-Frequency Fluctuations in the Default Mode Network in Medication-Free Patients With Bipolar II Depression: A Longitudinal Functional MRI Study[J/OL]. Front Psychiatry, 2020, 11: 574819 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/33488415. DOI: 10.3389/fpsyt.2020.574819.
[24]
WANG S, RAO B, CHEN L, et al. Using Fractional Amplitude of Low-Frequency Fluctuations and Functional Connectivity in Patients With Post-stroke Cognitive Impairment for a Simulated Stimulation Program[J/OL]. Front Aging Neurosci, 2021, 13: 724267 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/34483891. DOI: 10.3389/fnagi.2021.724267.
[25]
WANG C, LIU J, GUO J, et al. Dynamic brain activity states of memory impairment in stroke patients with varying motor outcomes[J/OL]. Front Aging Neurosci, 2023, 15: 1294009 [2025-08-31]. https://pubmed.ncbi.nlm.nih.gov/38046468. DOI: 10.3389/fnagi.2023.1294009.
[26]
ZHANG H, LU J, ZHANG L, et al. Abnormal cerebellar activity and connectivity alterations of the cerebellar-limbic system in post-stroke cognitive impairment: a study based on resting state functional magnetic resonance imaging[J/OL]. Front Neurosci, 2025, 19: 1543760 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/40177371. DOI: 10.3389/fnins.2025.1543760.
[27]
YIN M, LIU Y, ZHANG L, et al. Effects of rTMS Treatment on Cognitive Impairment and Resting-State Brain Activity in Stroke Patients: A Randomized Clinical Trial[J/OL]. Front Neural Circuits, 2020, 14: 563777 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/33117131. DOI: 10.3389/fncir.2020.563777.
[28]
WANG L, ZHU R, ZHOU X, et al. Altered local and remote functional connectivity in mild Alzheimer's disease patients with sleep disturbances[J/OL]. Front Aging Neurosci, 2023, 15: 1269582 [2025-05-20]. https://pubmed.ncbi.nlm.nih.gov/37920381. DOI: 10.3389/fnagi.2023.1269582.
[29]
FASCHER M, NOWACZYNSKI S, MUEHLHAN M. Substance use disorders are characterised by increased voxel-wise intrinsic measures in sensorimotor cortices: An ALE meta-analysis[J/OL]. Neurosci Biobehav Rev, 2024, 162: 105712 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/38733896. DOI: 10.1016/j.neubiorev.2024.105712.
[30]
WANG Y, LIU W, YANG W, et al. Differential Abnormality in Regional Brain Spontaneous Activity and Functional Connectivity in Patients of Non-Acute Subcortical Stroke With Versus Without Global Cognitive Functional Impairment[J/OL]. Brain Behav, 2025, 15(2): e70356 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/40001287. DOI: 10.1002/brb3.70356.
[31]
PENG C Y, CHEN Y C, CUI Y, et al. Regional Coherence Alterations Revealed by Resting-State fMRI in Post-Stroke Patients with Cognitive Dysfunction[J/OL]. PLoS One, 2016, 11(7): e0159574 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/27454170. DOI: 10.1371/journal.pone.0159574.
[32]
HAN K, DONG L, LIAO X, et al. Alterations in brain function in patients with post-stroke cognitive impairment: a resting-state functional magnetic resonance imaging study[J/OL]. Front Aging Neurosci, 2025, 17: 1501082 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/40046780. DOI: 10.3389/fnagi.2025.1501082.
[33]
HU B, TAN X Y, LIU W Q, et al. Advances in multimodal MRI of neuropsychiatric disorders based on link independent component analysis[J]. Chin J Magn Reson Imaging, 2022, 13(3): 129-133. DOI: 10.12015/issn.1674-8034.2022.03.032.
[34]
DIAO Y, YIN T, GRUETTER R, et al. PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain[J/OL]. Front Neurosci, 2021, 15: 602170 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/33841071. DOI: 10.3389/fnins.2021.602170.
[35]
WANG C, QIN W, ZHANG J, et al. Altered functional organization within and between resting-state networks in chronic subcortical infarction[J]. J Cereb Blood Flow Metab, 2014, 34(4): 597-605. DOI: 10.1038/jcbfm.2013.238.
[36]
WANG Y, WANG C, WEI Y, et al. Abnormal functional connectivities patterns of multidomain cognitive impairments in pontine stroke patients[J]. Hum Brain Mapp, 2022, 43(15): 4676-4688. DOI: 10.1002/hbm.25982.
[37]
LIU J, WANG Q, LIU F, et al. Altered functional connectivity in patients with post-stroke memory impairment: A resting fMRI study[J]. Exp Ther Med, 2017, 14(3): 1919-1928. DOI: 10.3892/etm.2017.4751.
[38]
YUE X, LI Z, LI Y, et al. Altered static and dynamic functional network connectivity in post-stroke cognitive impairment[J/OL]. Neurosci Lett, 2023, 799: 137097 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/36716911. DOI: 10.1016/j.neulet.2023.137097.
[39]
LI Y, YU Z, WU P, et al. Ability of an altered functional coupling between resting-state networks to predict behavioral outcomes in subcortical ischemic stroke: A longitudinal study[J/OL]. Front Aging Neurosci, 2022, 14: 933567 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/36185473. DOI: 10.3389/fnagi.2022.933567.
[40]
FRISTON K, MORAN R, SETH A K. Analysing connectivity with Granger causality and dynamic causal modelling[J]. Curr Opin Neurobiol, 2013, 23(2): 172-178. DOI: 10.1016/j.conb.2012.11.010.
[41]
SEMMEL E S, QUADRI T R, KING T Z. Graph Theoretical Analysis of Brain Network Characteristics in Brain Tumor Patients: A Systematic Review[J]. Neuropsychology Review, 2021, 32(3): 651-675. DOI: 10.1007/s11065-021-09512-5.
[42]
FASKOWITZ J, BETZEL R F, SPORNS O. Edges in brain networks: Contributions to models of structure and function[J]. Network Neuroscience, 2022, 6(1): 1-28. DOI: 10.1162/netn_a_00204.
[43]
LI Z, HAN Y, JIANG J. Different brain functional networks between subjective cognitive decline and health control based on graph theory[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 5752-5755. DOI: 10.1109/EMBC46164.2021.9630421.
[44]
ZHU H, ZUO L, ZHU W, et al. The distinct disrupted plasticity in structural and functional network in mild stroke with basal ganglia region infarcts[J]. Brain Imaging Behav, 2022, 16(5): 2199-2219. DOI: 10.1007/s11682-022-00689-8.
[45]
MIAO G, RAO B, WANG S, et al. Decreased Functional Connectivities of Low-Degree Level Rich Club Organization and Caudate in Post-stroke Cognitive Impairment Based on Resting-State fMRI and Radiomics Features[J/OL]. Front Neurosci, 2021, 15: 796530 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35250435. DOI: 10.3389/fnins.2021.796530.
[46]
BOURNONVILLE C, HENON H, DONDAINE T, et al. Identification of a specific functional network altered in poststroke cognitive impairment[J/OL]. Neurology, 2018, 90(21): e1879-e1888 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/29678937. DOI: 10.1212/WNL.0000000000005553.
[47]
ZHU Y, BAI L, LIANG P, et al. Disrupted brain connectivity networks in acute ischemic stroke patients[J]. Brain Imaging Behav, 2017, 11(2): 444-453. DOI: 10.1007/s11682-016-9525-6.
[48]
HUANG K X, ZHANG T J. Research progress of MRI-based connectivity group in central nervous system diseases[J]. Chin J Magn Reson Imaging, 2025, 16(2): 114-118. DOI: 10.12015/issn.1674-8034.2025.02.018.
[49]
ROLLS E T, DECO G, HUANG C C, et al. The human language effective connectome[J/OL]. Neuroimage, 2022, 258: 119352 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35659999. DOI: 10.1016/j.neuroimage.2022.119352.
[50]
LIANG S L, WANG D J. Application progress of dynamic causal model in brain network research[J]. Chinese Journal of Biomedical Engineering, 2022, 41(1): 86-99. DOI: 10.3969/j.issn.0258-8021.2022.01.010.
[51]
ZHANG J, LI Z, CAO X, et al. Altered Prefrontal-Basal Ganglia Effective Connectivity in Patients With Poststroke Cognitive Impairment[J/OL]. Front Neurol, 2020, 11: 577482. [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/33391148. DOI: 10.3389/fneur.2020.577482.
[52]
ZHANG J, TANG H, ZUO L, et al. Identification of a cognitive network with effective connectivity to post-stroke cognitive impairment[J]. Cognitive Neurodynamics, 2024, 18(6): 3741-3756. DOI: 10.1007/s11571-024-10139-4.
[53]
CHEN H, MAO Q, ZHANG Y, et al. Disrupted Effective Connectivity within the Fronto-Thalamic Circuit in Pontine Infarction: A Spectral Dynamic Causal Modeling Study[J/OL]. Brain Sci, 2024, 14(1): 45 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/38248260. DOI: 10.3390/brainsci14010045.
[54]
RUAN Z, ZHOU X, RAO B, et al. Network dynamics in post-stroke cognitive impairment: insights from effective connectivity analysis[J]. Brain Imaging Behav, 2025, 19(2): 346-356. DOI: 10.1007/s11682-025-00972-4.
[55]
GÜNTHER M, KANTELHARDT J W, BARTSCH R P. The Reconstruction of Causal Networks in Physiology[J/OL]. Front Netw Physiol, 2022, 2: 893743 [2025-08-20]. https://pubmed.ncbi.nlm.nih.gov/36926108. DOI: 10.3389/fnetp.2022.893743.
[56]
HAO Z, SHI Y, HUANG L, et al. The Atypical Effective Connectivity of Right Temporoparietal Junction in Autism Spectrum Disorder: A Multi-Site Study[J/OL]. Front Neurosci, 2022, 16: 927556 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/35924226. DOI: 10.3389/fnins.2022.927556.
[57]
ALLEGRA M, FAVARETTO C, METCALF N, et al. Stroke-related alterations in inter-areal communication[J/OL]. Neuroimage Clin, 2021, 32: 102812 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/34544032. DOI: 10.1016/j.nicl.2021.102812.
[58]
ZHAO Z, CAI H, HUANG M, et al. Altered Functional Connectivity of Hippocampal Subfields in Poststroke Dementia[J]. J Magn Reson Imaging, 2021, 54(4): 1337-1348. DOI: 10.1002/jmri.27691.
[59]
YAN S, LI Y, LU J, et al. Structural and functional alterations within the Papez circuit in subacute stroke patients[J]. Brain Imaging Behav, 2022, 16(6): 2681-2689. DOI: 10.1007/s11682-022-00727-5.
[60]
CHEN M Z, WANG Z M, WU Y F, et al. Based on degree centrality and Granger causality analysis, the changes of effective connectivity of brain network in patients with early ischemic stroke in basal ganglia were studied.[J]. Journal of Clinical Radiology, 2022, 41(3): 410-414. DOI: 10.13437/j.cnki.jcr.2022.03.040.
[61]
LI J H, LUO Y D, DUAN C X, et al. Research progress on predictors of post-stroke cognitive impairment[J]. Nerve injury and functional reconstruction, 2025, 20(8): 478-482. DOI: 10.16780/j.cnki.sjssgncj.20241366
[62]
LEE M, YEO N Y, AHN H J, et al. Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning[J/OL]. Alzheimers Res Ther, 2023, 15(1): 147 [2025-08-31]. https://www.ncbi.nlm.nih.gov/pubmed/37653560. DOI: 10.1186/s13195-023-01289-4.
[63]
YU F W, CHEN P Z, LI Z L, et al. Application progress of 7T magnetic resonance imaging in nervous system diseases[J]. Chinese Journal of Medical Imaging, 2025, 33(5): 519-524, 536. DOI: 10.3969/j.issn.1005-5185.2025.05.012.

PREV Research progress of fMRI in the neural mechanisms linking the FTO gene to obesity
NEXT Research advances on the neurological mechanisms of chronic neck pain: Focusing on neuroimaging evidence of acute-to-chronic transition
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn