Share:
Share this content in WeChat
X
Review
Research advances on the neurological mechanisms of chronic neck pain: Focusing on neuroimaging evidence of acute-to-chronic transition
LI Jinghu  ZHANG Shuaipan  ZHOU Xin  KONG Lingjun  ZHU Qingguang  REN Jun  JIN Ming  MA Ying  WANG Shoujian  FANG Min 

DOI:10.12015/issn.1674-8034.2025.12.024.


[Abstract] The understanding of the pathophysiological mechanisms underlying chronic neck pain has undergone profound evolution, shifting from traditional models centered on peripheral tissue injury toward a systemic theoretical framework emphasizing adaptive remodeling within the central nervous system. Multimodal MRI studies consistently demonstrate that patients with chronic neck pain exhibit extensive and systemic central remodeling. This manifests as alterations in gray matter volume and impaired white matter microstructural integrity in key pain processing nodes such as the anterior cingulate cortex, insula, prefrontal cortex, and thalamus. These changes are accompanied by dysfunctional connectivity within large-scale brain networks, including the default mode network, salience network, and central executive network. Crucially, prospective longitudinal studies have identified a series of predictive neurobiological markers, including early hyperactivation in the insula and anterior cingulate cortex, pathological reorganization of the sensorimotor cortex, and abnormal connectivity patterns within specific networks. These markers provide objective evidence for assessing individual risk of progression from subacute to chronic pain. This chain of evidence collectively demonstrates the central role of central sensitization in maintaining chronic neck pain, establishing the brain as an active regulator in the chronic pain process. However, research in this field still faces several significant limitations: existing imaging studies are predominantly single-center and small-sample designs, requiring validation of predictive biomarkers' robustness and universality through multicenter independent cohorts; Furthermore, the molecular mechanisms underlying neuroplastic changes and their causal relationship with clinical manifestations remain unclear. Future research urgently requires large-scale, multicenter prospective cohort studies to validate existing neurobiological markers. Integrating multi-omics technologies with behavioral assessments will elucidate the driving mechanisms of central neural remodeling, ultimately advancing the translation of neuroimaging biomarkers into clinical prediction models and targeted intervention strategies. This research direction holds profound scientific significance and clinical value for overcoming bottlenecks in the clinical management of chronic neck pain. This paper systematically integrates neuroimaging evidence to elucidate the central neural mechanisms underlying the transition from acute pain to chronic status.
[Keywords] chronic neck pain;acute phase transition;neuroimaging;magnetic resonance imaging;functional connectivity;central sensitization

LI Jinghu1   ZHANG Shuaipan1   ZHOU Xin1   KONG Lingjun1   ZHU Qingguang2   REN Jun1   JIN Ming1   MA Ying1   WANG Shoujian1   FANG Min1, 2*  

1 Department of Tuina, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

2 Tuina Research Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200437, China

Corresponding author: FANG M, E-mail: fm-tn0510@shutcm.edu.cn

Conflicts of interest   None.

Received  2025-06-09
Accepted  2025-12-09
DOI: 10.12015/issn.1674-8034.2025.12.024
DOI:10.12015/issn.1674-8034.2025.12.024.

[1]
KANG Y, TREWERN L, JACKMAN J, et al.. Chronic pain: definitions and diagnosis[J/OL]. BMJ, 2023, 381: e076036 [2025-06-09]. https://doi.org10.1136/bmj-2023-076036. DOI: 10.1136/bmj-2023-076036.
[2]
COHEN S P, HOOTEN W M. Advances in the diagnosis and management of neck pain[J/OL]. BMJ, 2017, 358: j3221 [2025-06-09]. https://doi.org/10.1136/bmj.j3221. DOI: 10.1136/bmj.j3221.
[3]
COHEN S P, VASE L, HOOTEN W M. Chronic pain: an update on burden, best practices, and new advances[J]. Lancet, 2021, 397(10289): 2082-2097. DOI: 10.1016/S0140-6736(21)00393-7.
[4]
THEODORE N. Degenerative Cervical Spondylosis[J]. N Engl J Med, 2020, 383(2): 159-168. DOI: 10.1056/NEJMra2003558.
[5]
ZHANG W, CHEN Z. Functional Brain Changes in Younger Population of Cervical Spondylosis Patients with Chronic Neck Pain[J]. J Pain Res, 2024, 17: 4433-4445. DOI: 10.2147/JPR.S488988.
[6]
CHAIKLA R, SREMAKAEW M, SAEKHO S, et al. Structural brain alterations and clinical associations in individuals with chronic nonspecific neck pain[J/OL]. Musculoskelet Sci Pract, 2025, 78: 103337 [2025-06-09]. https://doi.org/10.1016/j.msksp.2025.103337. DOI: 10.1016/j.msksp.2025.103337.
[7]
COPPIETERS I, CAGNIE B, DE PAUW R, et al. Enhanced amygdala-frontal operculum functional connectivity during rest in women with chronic neck pain: Associations with impaired conditioned pain modulation[J/OL]. Neuroimage Clin, 2021, 30: 102638 [2025-06-09]. https://doi.org/10.1016/j.nicl.2021.102638. DOI: 10.1016/j.nicl.2021.102638.
[8]
DJADE C D, DIORIO C, LAURIN D, et al. An exploratory identification of biological markers of chronic musculoskeletal pain in the low back, neck, and shoulders[J/OL]. PLoS One, 2022, 17(4): e0266999 [2025-06-09]. https://doi.org/10.1371/journal.pone.0266999. DOI: 10.1371/journal.pone.0266999.
[9]
WAGER T D, ATLAS L Y, LINDQUIST M A, et al. An fMRI-based neurologic signature of physical pain[J]. N Engl J Med, 2013, 368(15): 1388-1397. DOI: 10.1056/NEJMoa1204471.
[10]
GAO Z, CUI M J, WANG H J, et al. Changes in brain structure and function in patients with subacute neck pain: voxel-based morphological measurements and resting-state fMRI studies[J]. Radiology Practice, 2025, 40(2): 191-195. DOI: 10.13609/j.cnki.1000-0313.2025.02.008.
[11]
QIU Z, LIU T, ZENG C, et al. Local abnormal white matter microstructure in the spinothalamic tract in people with chronic neck and shoulder pain[J/OL]. Front Neurosci, 2025, 18: 1485045 [2025-06-09]. https://doi.org/10.3389/fnins.2024.1485045. DOI: 10.3389/fnins.2024.1485045.
[12]
QIAN Y, HUI X, MING Z, et al. Volumetric and functional connectivity alterations in patients with chronic cervical spondylotic pain[J]. Neuroradiology, 2020, 62(8): 995-1001. DOI: 10.1007/s00234-020-02413-z.
[13]
ZHANG J B. Multi-scale brain resting network modeling and brain function specificity in patients with neck pain[D]. Xi'an: University of Electronic Science and Technology of China, 2022. DOI: 10.27005/d.cnki.gdzku.2022.001931.
[14]
FARRELL S F, COWIN G J, PEDLER A, et al. Magnetic Resonance Spectroscopy Assessment of Brain Metabolite Concentrations in Individuals With Chronic Whiplash-associated Disorder: A Cross-sectional Study[J]. Clin J Pain, 2021, 37(1): 28-37. DOI: 10.1097/AJP.0000000000000890.
[15]
ZHENG J, ZHANG Y, ZHAO B, et al. Metabolic changes of thalamus assessed by 1H-MRS spectroscopy in patients of cervical spondylotic myelopathy following decompression surgery[J/OL]. Front Neurol, 2025, 15: 1513896 [2025-06-09]. https://doi.org/10.3389/fneur.2024.1513896. DOI: 10.3389/fneur.2024.1513896.
[16]
XU H, CHEN Y, TAO Y, et al. Modulation effect of acupuncture treatment on chronic neck and shoulder pain in female patients: Evidence from periaqueductal gray-based functional connectivity[J]. CNS Neurosci Ther, 2022, 28(5): 714-723. DOI: 10.1111/cns.13803.
[17]
CHAIKLA R, SREMAKAEW M, SAEKHO S, et al. Effects of manual therapy combined with therapeutic exercise on brain structure in patients with chronic nonspecific neck pain: A randomized controlled trial[J/OL]. J Pain, 2025, 29: 105336 [2025-06-09]. https://doi.org/10.1016/j.jpain.2025.105336. DOI: 10.1016/j.jpain.2025.105336.
[18]
BOSAK N, BRANCO P, KUPERMAN P, et al. Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury[J]. Ann Neurol, 2022, 92(5): 819-833. DOI: 10.1002/ana.26463.
[19]
MAKARY M M, POLOSECKI P, CECCHI G A, et al. Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain[J]. Proc Natl Acad Sci U S A, 2020, 117(18): 10015-10023. DOI: 10.1073/pnas.1918682117.
[20]
WANG X, NI X, OUYANG X, et al. Modulatory effects of acupuncture on raphe nucleus-related brain circuits in patients with chronic neck pain: A randomized neuroimaging trial[J/OL]. CNS Neurosci Ther, 2024, 30(3): e14335 [2025-06-09]. https://doi.org/10.1111/cns.14335. DOI: 10.1111/cns.14335.
[21]
APKARIAN A V, MUTSO A A, CENTENO M V, et al. Role of adult hippocampal neurogenesis in persistent pain[J]. Pain, 2016, 157(2): 418-428. DOI: 10.1097/j.pain.0000000000000332.
[22]
WOODWORTH D C, HOLLY L T, MAYER E A, et al. Alterations in cortical thickness and subcortical volume are associated with neurological symptoms and neck pain in patients with cervical spondylosis[J]. Neurosurgery, 2019, 84(3): 588-598. DOI: 10.1093/neuros/nyy066.
[23]
LIU A, WANG J, JIN T, et al. Identifying the genetic association between the cerebral cortex and fibromyalgia[J/OL]. Cereb Cortex, 2024, 34(8): bhae318 [2025-06-09]. https://doi.org/10.1093/cercor/bhae318. DOI: 10.1093/cercor/bhae318.
[24]
CHUA C S, BAI C H, SHIAO C Y, et al. Negative correlation of cortical thickness with the severity and duration of abdominal pain in Asian women with irritable bowel syndrome[J/OL]. PLoS One, 2017, 12(8): e0183960 [2025-06-09]. https://doi.org/10.1371/journal.pone.0183960. DOI: 10.1371/journal.pone.0183960.
[25]
BALIKI M N, PETRE B, TORBEY S, et al. Corticostriatal functional connectivity predicts transition to chronic back pain[J]. Nat Neurosci, 2012, 15(8): 1117-1119. DOI: 10.1038/nn.3153.
[26]
GAO Z, CUI M J, WANG H J, et al. Investigating Brain Structure and Functional Alterations in the Transition from Acute to Chronic Neck Pain: A Resting-State fMRI Study[J]. J Pain Res, 2025, 18: 579-587. DOI: 10.2147/JPR.S500924.
[27]
ZHANG J, WANG H, GUO L. Investigating the brain functional abnormalities underlying pain hypervigilance in chronic neck and shoulder pain: a resting-state fMRI study[J]. Neuroradiology, 2024, 66(8): 1353-1361. DOI: 10.1007/s00234-024-03286-2.
[28]
IHARA N, WAKAIZUMI K, NISHIMURA D, et al. Aberrant resting-state functional connectivity of the dorsolateral prefrontal cortex to the anterior insula and its association with fear avoidance belief in chronic neck pain patients[J/OL]. PLoS One, 2019, 14(8): e0221023 [2025-06-09]. https://doi.org/10.1371/journal.pone.0221023. DOI: 10.1371/journal.pone.0221023.
[29]
NEES F, LÖFFLER M, USAI K, et al. Hypothalamic-pituitary-adrenal axis feedback sensitivity in different states of back pain[J]. Psychoneuroendocrinology, 2019, 101: 60-66. DOI: 10.1016/j.psyneuen.2018.10.026.
[30]
TOUFEXIS C, MACGREGOR M, LEWIS A, et al. The effects of high-definition transcranial direct current stimulation on pain modulation and stress-induced hyperalgesia[J]. Br J Pain, 2023, 17(3): 244-254. DOI: 10.1177/20494637221150333.
[31]
KREMER M, BECKER L J, BARROT M, et al. How to study anxiety and depression in rodent models of chronic pain?[J]. Eur J Neurosci, 2021, 53(1): 236-270. DOI: 10.1111/ejn.14686.
[32]
BÄCKRYD E, ALFÖLDI P. Chronic pain and its relationship with anxiety and depression[J/OL]. Lakartidningen, 2023, 120: 23010 [2025-06-09]. https://pubmed.ncbi.nlm.nih.gov/37291900/.
[33]
WHITE L K, MAKHOUL W, TEFERI M, et al. The role of dlPFC laterality in the expression and regulation of anxiety[J/OL]. Neuropharmacology, 2023, 224: 109355 [2025-06-09]. https://doi.org/10.1016/j.neuropharm.2022.109355. DOI: 10.1016/j.neuropharm.2022.109355.
[34]
BADARNEE M, WEN Z, NASSAR N, et al. Gray matter associations with extinction-induced neural activation in patients with anxiety disorders[J]. J Psychiatr Res, 2023, 162: 180-186. DOI: 10.1016/j.jpsychires.2023.05.015.
[35]
MATSUO Y, KURATA J, SEKIGUCHI M, et al. Attenuation of cortical activity triggering descending pain inhibition in chronic low back pain patients: a functional magnetic resonance imaging study[J]. J Anesth, 2017, 31(4): 523-530. DOI: 10.1007/s00540-017-2343-1.
[36]
MUNGOVEN T J, MARCISZEWSKI K K, MACEFIELD V G, et al. Alterations in pain processing circuitries in episodic migraine[J/OL]. J Headache Pain, 2022, 23(1): 9 [2025-06-09]. https://doi.org/10.1186/s10194-021-01381-w. DOI: 10.1186/s10194-021-01381-w.
[37]
VERGALLITO A, RIVA P, PISONI A, et al. Modulation of negative emotions through anodal tDCS over the right ventrolateral prefrontal cortex[J]. Neuropsychologia, 2018, 119: 128-135. DOI: 10.1016/j.neuropsychologia.2018.07.037.
[38]
QIU J, DU M, YANG J, et al. The brain's structural differences between postherpetic neuralgia and lower back pain[J/OL]. Sci Rep, 2021, 11(1): 22455 [2025-06-09]. https://doi.org/10.1038/s41598-021-01915-x. DOI: 10.1038/s41598-021-01915-x.
[39]
LI D, XU H, YANG Q, et al. Cerebral White Matter Alterations Revealed by Multiple Diffusion Metrics in Cervical Spondylotic Patients with Pain: A TBSS Study[J]. Pain Med, 2022, 23(5): 895-901. DOI: 10.1093/pm/pnab227.
[40]
REN J, GAO Z, CHANG B Y, et al. Efficacy and Central Mechanism of Acupuncture Treatment for Subacute Nonspecific Low Back Pain: A Clinical Neuroimaging Protocol[J]. J Pain Res, 2025, 18: 3299-3308. DOI: 10.2147/JPR.S529456.
[41]
VACHON-PRESSEAU E, TÉTREAULT P, PETRE B, et al. Corticolimbic anatomical characteristics predetermine risk for chronic pain[J]. Brain, 2016, 139(Pt 7): 1958-1970. DOI: 10.1093/brain/aww100.
[42]
ZHANG Z, GEWANDTER J S, GEHA P. Brain Imaging Biomarkers for Chronic Pain[J/OL]. Front Neurol, 2022, 12: 734821 [2025-06-09]. https://doi.org/10.3389/fneur.2021.734821. DOI: 10.3389/fneur.2021.734821.
[43]
ZHANG L B, CHEN Y X, LI Z J, et al. Advances and challenges in neuroimaging-based pain biomarkers[J/OL]. Cell Rep Med, 2024, 5(10): 101784 [2025-06-09]. https://doi.org/10.1016/j.xcrm.2024.101784. DOI: 10.1016/j.xcrm.2024.101784.
[44]
VAN DER MIESEN M M, LINDQUIST M A, WAGER T D. Neuroimaging-based biomarkers for pain: state of the field and current directions[J/OL]. Pain Rep, 2019, 4(4): e751 [2025-06-09]. https://doi.org/10.1097/PR9.0000000000000751. DOI: 10.1097/PR9.0000000000000751.
[45]
BALIKI M N, MANSOUR A R, BARIA A T, et al. Functional reorganization of the default mode network across chronic pain conditions[J/OL]. PLoS One, 2014, 9(9): e106133 [2025-06-09]. https://doi.org/10.1371/journal.pone.0106133. DOI: 10.1371/journal.pone.0106133.
[46]
PFANNMÖLLER J, LOTZE M. Review on biomarkers in the resting-state networks of chronic pain patients[J]. Brain Cogn, 2019, 131: 4-9. DOI: 10.1016/j.bandc.2018.06.005.
[47]
FAN N, CHEN J, ZHAO B, et al. Neural correlates of central pain sensitization in chronic low back pain: a resting-state fMRI study[J]. Neuroradiology, 2023, 65(12): 1767-1776. DOI: 10.1007/s00234-023-03237-3.
[48]
ZENG X, SUN Y, ZHIYING Z, et al. Chronic pain-induced functional and structural alterations in the brain: A multi-modal meta-analysis[J/OL]. J Pain, 2025, 28: 104740 [2025-06-09]. https://doi.org/10.1016/j.jpain.2024.104740. DOI: 10.1016/j.jpain.2024.104740.
[49]
DE PAUW R, AERTS H, SIUGZDAITE R, et al. Hub disruption in patients with chronic neck pain: a graph analytical approach[J]. Pain, 2020, 161(4): 729-741. DOI: 10.1097/j.pain.0000000000001762.
[50]
LIN W Y, HSIEH J C, LU C C, et al. Altered metabolic connectivity between the amygdala and default mode network is related to pain perception in patients with cancer[J/OL]. Sci Rep, 2022, 12(1): 14105 [2025-06-09]. https://doi.org/10.1038/s41598-022-18430-2. DOI: 10.1038/s41598-022-18430-2.
[51]
DE ZOETE R M J, STANWELL P, WEBER K A, et al. Differences in Structural Brain Characteristics Between Individuals with Chronic Nonspecific Neck Pain and Asymptomatic Controls: A Case-Control Study[J]. J Pain Res, 2022, 15: 521-531. DOI: 10.2147/JPR.S345365.
[52]
ARCHIBALD J, MACMILLAN E L, GRAF C, et al. Metabolite activity in the anterior cingulate cortex during a painful stimulus using functional MRS[J/OL]. Sci Rep, 2020, 10(1): 19218 [2025-06-09]. https://doi.org/10.1038/s41598-020-76263-3. DOI: 10.1038/s41598-020-76263-3.
[53]
PEEK A L, REBBECK T, PUTS N A, et al. Brain GABA and glutamate levels across pain conditions: A systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool[J/OL]. Neuroimage, 2020, 210: 116532 [2025-06-09]. https://doi.org/10.1016/j.neuroimage.2020.116532. DOI: 10.1016/j.neuroimage.2020.116532.
[54]
FERRARO S, KLUGAH-BROWN B, TENCH C R, et al. Dysregulated anterior insula reactivity as robust functional biomarker for chronic pain-Meta-analytic evidence from neuroimaging studies[J]. Hum Brain Mapp, 2022, 43(3): 998-1010. DOI: 10.1002/hbm.25702.
[55]
LEE J J, KIM H J, ČEKO M, et al. A neuroimaging biomarker for sustained experimental and clinical pain[J]. Nat Med, 2021, 27(1): 174-182. DOI: 10.1038/s41591-020-1142-7.

PREV Research progress on voxel-based and node-based analyses of functional connectivity alterations in ischemic post-stroke cognitive impairment
NEXT Advances in brain MRI research on the association between chronic low back pain and cognitive decline
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn