Share:
Share this content in WeChat
X
Review
Progress in research on central mechanisms of rs-fMRI in acupuncture treatment of Alzheimer's disease
XIE Wenting  LI Li  CHEN Yuzhu  WEI Yuting  MA Ling  YAN Xingke 

DOI:10.12015/issn.1674-8034.2025.12.026.


[Abstract] Alzheimer's disease (AD) is a disease characterized by progressive cognitive decline as the main clinical manifestation, which seriously affects patients' physical and mental health and social development. Acupuncture is one of the effective methods for treating AD, which can significantly improve AD symptoms and delay disease progression, but its central mechanism has not been fully clarified. Functional magnetic resonance imaging (fMRI) technology, with advantages such as no radiation, high temporal and spatial resolution, and high imaging clarity, provides a visual means for in-depth study of the central mechanism of acupuncture in the treatment of AD. By sorting out and summarizing the studies on the central mechanism of resting-state functional magnetic resonance imaging (rs-fMRI) in acupuncture treatment of AD, elaborates on the limitations of current research and points out the directions for future studies,this paper finds that AD patients have pathological manifestations such as structural damage in brain regions, abnormal functional connections between brain regions, and weakened connection effects of brain networks. Acupuncture can exert its role in treating AD by reducing structural damage in brain regions such as the hippocampus, temporal lobe, cingulate gyrus, and caudate nucleus, improving abnormal functional connections between brain regions such as the posterior cingulate gyrus, temporal lobe, parietal lobe, and frontal lobe, enhancing the connectivity effects of large-scale brain networks, including the default mode network (DMN), fronto-parietal network (FPN), central executive network (CEN), sensorimotor network (SMN), as well as the inter-network connectivity between the dorsal attention network (DAN) and DMN, so as to exert a therapeutic effect on AD, with the aim of providing a more comprehensive reference for the in-depth research on the central mechanism of acupuncture in the treatment of AD and the optimization of clinical protocols in the future.
[Keywords] Alzheimer's disease;acupuncture;resting-state functional magnetic resonance imaging;magnetic resonance imaging;central mechanism

XIE Wenting1   LI Li1   CHEN Yuzhu2   WEI Yuting1   MA Ling1   YAN Xingke1*  

1 School of Acupuncture and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, China

2 Department of Traditional Chinese Medicine, Medical College of Qinghai University, Xining 810016, China

Corresponding author: YAN X K, E-mail: yanxingke@126.com

Conflicts of interest   None.

Received  2025-07-24
Accepted  2025-10-24
DOI: 10.12015/issn.1674-8034.2025.12.026
DOI:10.12015/issn.1674-8034.2025.12.026.

[1]
BEATA B K, WOJCIECH J, JOHANNES K, et al. Alzheimer's Disease-Biochemical and Psychological Background for Diagnosis and Treatment[J/OL]. Int J Mol Sci, 2023, 24(2): 1059 [2025-03-11]. https://www.mdpi.com/1422-0067/24/2/1059. DOI: 10.3390/ijms24021059.
[2]
KANG M, LI C, MAHAJAN A, et al. Subjective Cognitive Decline Plus and Longitudinal Assessment and Risk for Cognitive Impairment[J]. JAMA Psychiatry, 2024, 81(10): 993-1002. DOI: 10.1001/jamapsychiatry.2024.1678.
[3]
ZHONG C, ZHAO J, WONG C, et al. Methodological quality of systematic reviews on treatments for Alzheimer's disease: a cross-sectional study[J/OL]. Alzheimers Res Ther, 2022, 14(1): 159 [2025-03-11]. https://doi.org/10.1186/s13195-022-01100-w. DOI: 10.1186/s13195-022-01100-w.
[4]
YANG T, LIU W, HE J, et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis[J/OL]. Alzheimers Res Ther, 2024, 16(1): 140 [2025-03-11]. https://doi.org/10.1186/s13195-024-01505-9. DOI: 10.1186/s13195-024-01505-9.
[5]
SHARMA A, RUDRAWAR S, BHARATE S B, et al. Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: current and future perspective[J]. RSC Med Chem, 2025, 16(2): 652-693. DOI: 10.1039/d4md00630e.
[6]
KWON C Y, LEE B. Acupuncture for Behavioral and Psychological Symptoms of Dementia: A Systematic Review and Meta-Analysis[J]. J Clin Med, 2021, 10(14): 3087-3102. DOI: 10.3390/jcm10143087.
[7]
SHI H, ZHANG X, SI G, et al. Quality of the Evidence Supporting the Role of Acupuncture Interventions for Vascular Dementia[J]. Neuropsychiatr Dis Treat, 2023, 19: 27-48. DOI: 10.2147/NDT.S389924.
[8]
YUE J H, ZHANG Q H, YANG X, et al. Magnetic resonance imaging of white matter in Alzheimer's disease: a global bibliometric analysis from 1990 to 2022[J/OL]. Front Neurosci, 2023, 17: 1163809 [2025-03-11]. https://www.frontiersin.org/articles/10.3389/fnins.2023.1163809. DOI: 10.3389/fnins.2023.1163809.
[9]
LIU L, HU X, SU Y, et al. Application and Development of Nanotechnology in Traditional Chinese Acupuncture in Recent 20 Years: A Comprehensive Review[J]. ACS Appl Mater Interfaces, 2025, 17(15): 22161-22183. DOI: 10.1021/acsami.4c22627.
[10]
TAYLOR S F, MARTZ M E. Real-time fMRI neurofeedback: the promising potential of brain-training technology to advance clinical neuroscience[J]. Neuropsychopharmacology, 2023, 48(1): 238-239. DOI: 10.1038/s41386-022-01397-z.
[11]
ERIN O, BOYVAT M, LAZOVIC J, et al. Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot[J/OL]. Adv Sci (Weinh), 2021, 8(13): 2100463 [2025-03-11]. https://doi.org/10.1002/advs.202100463. DOI: 10.1002/advs.202100463.
[12]
POSSE S, RAMANNA S, MOELLER S, et al. Corrigendum: Real-time fMRI using multi-band echo-volumar imaging with millimeter spatial resolution and sub-second temporal resolution at 3 tesla[J/OL]. Front Neurosci, 2025, 19: 1612503 [2025-03-11]. https://doi.org/10.3389/fnins.2025.1612503. DOI: 10.3389/fnins.2025.1612503.
[13]
KOPAL J, PIDNEBESNA A, TOMEČEK D, et al. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines[J]. Hum Brain Mapp, 2020, 41(18): 5325-5340. DOI: 10.1002/hbm.25195.
[14]
ROMERO A B, FURTADO F S, SERTIC M, et al. Abdo minal Positron Emission Tomography/Magnetic Resonance Imaging[J]. Magn Reson Imaging Clin N Am, 2023, 31(4): 579-589. DOI: 10.1016/j.mric.2023.06.003.
[15]
HOSADURG N, KRAMER C M. Magnetic Resonance Imaging Techniques in Peripheral Arterial Disease[J]. Adv Wound Care (New Rochelle), 2023, 12(11): 611-625. DOI: 10.1089/wound.2022.0161.
[16]
CAMPBELL O L, WEBER A M. Monofractal analysis of functional magnetic resonance imaging: An introductory review[J]. Hum Brain Mapp, 2022, 43(8): 2693-2706. DOI: 10.1002/hbm.25801.
[17]
WARREN S L, MOUSTAFA A A. Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review[J]. J Neuroimaging, 2023, 33(1): 5-18. DOI: 10.1111/jon.13063.
[18]
LAKHANI D A, SABSEVITZ D S, CHAICHANA K L, et al. Current State of Functional MRI in the Presurgical Planning of Brain Tumors[J/OL]. Radiol Imaging Cancer, 2023, 5(6): e230078 [2025-03-11]. https://doi.org/10.1148/rycan.230078. DOI: 10.1148/rycan.230078.
[19]
MANAN H A, AIDILLA S N, PALANIANDY K, et al. The utilisation of fMRI for pre-operative mapping in the paediatric population with central nervous system tumours: a systematic review[J]. Neuroradiology, 2025, 67(3): 643-656. DOI: 10.1007/s00234-024-03489-7.
[20]
WANG X, NIU Y, WANG J, et al. Application progress of resting-state functional magnetic resonance imaging in study of default mode network in patients with vascular cognitive impairment[J/OL]. Chin J Med Dev, 2024, 48(1): 51-56. DOI: 10.3969/j.issn.1671-7104.230141.
[21]
KEYVANFARD F, SCHMID A K, NASIRAEI-MOGHADDAM A. Functional Connectivity Alterations of Within and Between Networks in Schizophrenia: A Retrospective Study[J]. Basic Clin Neurosci, 2023, 14(3): 397-409. DOI: 10.32598/bcn.2022.3928.2.
[22]
AMEEN F A, HASSAN M, MO T, et al. Static and dynamic changes in amplitude of Low-Frequency fluctuations in patients with Self-Limited epilepsy with centrotemporal Spikes (SeLECTS): A Resting-State fMRI study[J/OL]. J Clin Neurosci, 2024, 129: 110817 [2025-03-11]. https://doi.org/10.1016/j.jocn.2024.110817. DOI: 10.1016/j.jocn.2024.110817.
[23]
ZHANG R, REN J, LEI X, et al. Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 134: 111066 [2025-03-11]. https://doi.org/10.1016/j.pnpbp.2024.111066. DOI: 10.1016/j.pnpbp.2024.111066.
[24]
VOIGT K, LIANG E X, MISIC B, et al. Metabolic and functional connectivity provide unique and complementary insights into cognition-connectome relationships[J]. Cereb Cortex, 2023, 33(4): 1476-1488. DOI: 10.1093/cercor/bhac150.
[25]
AL A S, NAJM L, LADOUCEUR L, et al. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives[J/OL]. Adv Funct Mater, 2023, 33(37): 2302673 [2024-03-11]. https://onlinelibrary.wiley.com/doi/10.1002/adfm.202302673. DOI: 10.1002/adfm.202302673.
[26]
LIU H, CHEN S X, XU H, et al. Correlation analysis among cerebral blood flow perfusion, hippocampal volume, and cognitive function in Alzheimer's disease[J]. Clin J Med Off, 2022, 50(3): 289-291. DOI: 10.16680/j.1671-3826.2022.03.18.
[27]
BRACCA V, PREMI E, COTELLI M S, et al. Loss of Insight in Syndromes Associated with Frontotemporal Lobar Degeneration: Clinical and Imaging Features[J]. Am J Geriatr Psychiatry, 2025, 33(4): 450-462. DOI: 10.1016/j.jagp.2024.12.005.
[28]
MASCARENHAS F L, SAGE C N, OLUFADI Y, et al. Intraindividual Cognitive Variability and Magnetic Resonance Imaging in Aging American Indians: Data from the Strong Heart Study[J]. J Alzheimers Dis, 2023, 91(4): 1395-1407. DOI: 10.3233/JAD-220825.
[29]
XIONG Y, YE C, SUN R, et al. Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer's Disease[J]. Curr Alzheimer Res, 2023, 20(3): 161-174. DOI: 10.2174/1567205020666230602144659.
[30]
BACHMANN T, SCHROETER M L, CHEN K, et al. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer's Disease[J/OL]. Neuroimage Clin, 2023, 38: 103371 [2025-03-11]. https://doi.org/10.1016/j.nicl.2023.103371. DOI: 10.1016/j.nicl.2023.103371.
[31]
WU M, SCHWEITZER N, IORDANOVA B E, et al. In Pre-Clinical AD Small Vessel Disease is Associated With Altered Hippocampal Connectivity and Atrophy[J]. Am J Geriatr Psychiatry, 2023, 31(2): 112-123. DOI: 10.1016/j.jagp.2022.09.011.
[32]
SHAN Y, WANG J J, WANG Z Q, et al. Neuronal Specificity of Acupuncture in Alzheimer's Disease and Mild Cognitive Impairment Patients: A Functional MRI Study[J/OL]. Evid Based Complement Alternat Med, 2018, 2018: 7619197 [2025-03-11]. https://doi.org/10.1155/2018/7619197. DOI: 10.1155/2018/7619197.
[33]
WANG Z, NIE B, LI D, et al. Effect of acupuncture in mild cognitive impairment and Alzheimer disease: a functional MRI study[J/OL]. PLoS One, 2012, 7(8): e42730 [2025-03-11]. https://doi.org/10.1371/journal.pone.0042730. DOI: 10.1371/journal.pone.0042730.
[34]
DAI Y L. Exploration of the Default Network Mechanism of "Tiaoshen Yizhi" Acupuncture in Regulating Episodic Memory in aMCI Based on Posterior Cingulate Cortex Functional Connectivity[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2023.
[35]
JENSEN D, EBMEIER K P, AKBARALY T, et al. Association of Diet and Waist-to-Hip Ratio With Brain Connectivity and Memory in Aging[J/OL]. JAMA Netw Open, 2025, 8(3): e250171 [2025-03-11]. https://doi.org/10.1001/jamanetworkopen.2025.0171. DOI: 10.1001/jamanetworkopen.2025.0171.
[36]
LIAO Z, TILLEY S, MOURAVIEV A, et al. Pubertal Testosterone and Brain Response to Faces in Young Adulthood: An Interplay between Organizational and Activational Effects in Young Men[J]. J Neurosci, 2021, 41(13): 2990-2999. DOI: 10.1523/JNEUROSCI.0190-20.2021.
[37]
KEITH C M, HAUT M W, VIEIRA L T C, et al. Memory consolidation, temporal and parietal atrophy, and metabolism in amyloid-beta positive and negative mild cognitive impairment[J]. J Alzheimers Dis, 2024, 102(3): 778-791. DOI: 10.1177/13872877241291223.
[38]
DECETY J, LAMM C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition[J]. Neuroscientist, 2007, 13(6): 580-593. DOI: 10.1177/1073858407304654.
[39]
MARTINEZ-TRUJILLO J. Visual Attention in the Prefrontal Cortex[J]. Annu Rev Vis Sci, 2022, 8: 407-425. DOI: 10.1146/annurev-vision-100720-031711.
[40]
SOHN W S, YOO K, NA D L, et al. Progressive changes in hippocampal resting-state connectivity across cognitive impairment: a cross-sectional study from normal to Alzheimer disease[J]. Alzheimer Dis Assoc Disord, 2014, 28(3): 239-246. DOI: 10.1097/WAD.0000000000000027.
[41]
HAWKINS K A, EMADI N, PEARLSON G D, et al. The effect of age and smoking on the hippocampus and memory in late middle age[J]. Hippocampus, 2018, 28(11): 846-849. DOI: 10.1002/hipo.23014.
[42]
WEI Y T, SU M L, ZHU T T, et al. Effect of Acupuncture at "Yizhi Tiaoshen" Acupoint - prescription on Functional Connectivity between Hippocampus and Whole - brain in Alzheimer's Disease Patients[J]. Chinese Acupuncture & Moxibustion, 2023, 43(12): 1351-1357. DOI: 10.13703/j.0255-2930.20230405-0002.
[43]
ZHENG W, SU Z, LIU X, et al. Modulation of functional activity and connectivity by acupuncture in patients with Alzheimer disease as measured by resting-state fMRI[J/OL]. PLoS One, 2018, 13(5): e0196933 [2025-03-11]. https://doi.org/10.1371/journal.pone.0196933. DOI: 10.1371/journal.pone.0196933.
[44]
ZHAN Y, FU Q, PEI J, et al. Modulation of Brain Activity and Functional Connectivity by Acupuncture Combined With Donepezil on Mild-to-Moderate Alzheimer's Disease: A Neuroimaging Pilot Study[J/OL]. Front Neurol, 2022, 13: 912923 [2025-03-11]. https://doi.org/10.3389/fneur.2022.912923. DOI: 10.3389/fneur.2022.912923.
[45]
ZHANG Z, CHAN M Y, HAN L, et al. Dissociable Effects of Alzheimer's Disease-Related Cognitive Dysfunction and Aging on Functional Brain Network Segregation[J]. J Neurosci, 2023, 43(46): 7879-7892. DOI: 10.1523/JNEUROSCI.0579-23.2023.
[46]
JUNG Y H, JANG H, PARK S, et al. Effectiveness of Personalized Hippocampal Network-Targeted Stimulation in Alzheimer Disease: A Randomized Clinical Trial[J/OL]. JAMA Netw Open, 2024, 7(5): e249220 [2025-03-11]. https://doi.org/10.1001/jamanetworkopen.2024.9220. DOI: 10.1001/jamanetworkopen.2024.9220.
[47]
TONDELLI M, BALLOTTA D, MARAMOTTI R, et al. Resting-state networks and anosognosia in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2024, 16: 1415994 [2025-03-11]. https://doi.org/10.3389/fnagi.2024.1415994. DOI: 10.3389/fnagi.2024.1415994.
[48]
GUAN Z, ZHANG M, ZHANG Y, et al. Distinct Functional and Metabolic Alterations of DMN Subsystems in Alzheimer's Disease: A Simultaneous FDG-PET/fMRI Study[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3443-3446. DOI: 10.1109/EMBC46164.2021.9629472.
[49]
IBRAHIM B, SUPPIAH S, IBRAHIM N, et al. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review[J]. Hum Brain Mapp, 2021, 42(9): 2941-2968. DOI: 10.1002/hbm.25369.
[50]
GIORGIO J, ADAMS J N, MAASS A, et al. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation[J/OL]. Neuron, 2024, 112(4): 676-686.e4 [2025-03-11]. https://www.sciencedirect.com/science/article/pii/S089662732300974X. DOI: 10.1016/j.neuron.2023.11.014.
[51]
MENON V. 20 years of the default mode network: A review and synthesis[J]. Neuron, 2023, 111(16): 2469-2487. DOI: 10.1016/j.neuron.2023.04.023.
[52]
ZHENG W, CUI B, HAN Y, et al. Disrupted Regional Cerebral Blood Flow, Functional Activity and Connectivity in Alzheimer's Disease: A Combined ASL Perfusion and Resting State fMRI Study[J/OL]. Front Neurosci, 2019, 13: 738 [2025-03-11]. https://doi.org/10.3389/fnins.2019.00738. DOI: 10.3389/fnins.2019.00738.
[53]
LIANG P, WANG Z, QIAN T, et al. Acupuncture stimulation of Taichong (Liv3) and Hegu (LI4) modulates the default mode network activity in Alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2014, 29(8): 739-748. DOI: 10.1177/1533317514536600.
[54]
JI S, ZHANG H, QIN W, et al. Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network[J/OL]. Neural Plast, 2021, 2021: 8876873 [2025-03-11]. https://doi.org/10.1155/2021/8876873. DOI: 10.1155/2021/8876873.
[55]
CHEN X. Deep vs. Shallow Needling at Taixi (KI3) Modulates Default Mode Network Connectivity in Alzheimer's Disease: A Randomized Controlled Trial[J]. J Alzheimers Dis, 2022, 86(3): 1235-1248. DOI: 10.3233/JAD-211345.
[56]
LIN L, CHEN Y, FAN Z, et al. Hierarchical Organization of Bilateral Prefrontal-Basal Ganglia Circuits for Response Inhibition Control[J/OL]. Hum Brain Mapp, 2025, 46(8): e70235 [2025-03-11]. https://doi.org/10.1002/hbm.70235. DOI: 10.1002/hbm.70235.
[57]
WU H, SONG Y, YANG X, et al. Functional and structural alterations of dorsal attention network in preclinical and early-stage Alzheimer's disease[J]. CNS Neurosci Ther, 2023, 29(6): 1512-1524. DOI: 10.1111/cns.14092.
[58]
BENITEZ-LUGO M L, VAZQUEZ-MARRUFO M, PINERO-PINTO E, et al. Analysis of Physical-Cognitive Tasks Including Feedback-Based Technology for Alzheimer's Disorder in a Randomized Experimental Pilot Study[J]. J Clin Med, 2023, 12(17): 5484-5498. DOI: 10.3390/jcm12175484.
[59]
HE L L. Exploration of Heterogeneous Acupuncture Effects of Acupuncture at Taixi (KI3) on Brain Networks in Healthy Young Adults and Elderly Adults Based on fMRI[D]. Luzhou: Southwest Medical University, 2021.
[60]
FENG Y, BAI L, REN Y, et al. FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients[J]. Magn Reson Imaging, 2012, 30(5): 672-682. DOI: 10.1016/j.mri.2012.01.003.
[61]
ZHAO Q, SANG X, METMER H, et al. Functional segregation of executive control network and frontoparietal network in Alzheimer's disease[J]. Cortex, 2019, 120: 36-48. DOI: 10.1016/j.cortex.2019.04.026.
[62]
YANG X, WU H, SONG Y, et al. Functional MRI-specific alterations in frontoparietal network in mild cognitive impairment: an ALE meta-analysis[J/OL]. Front Aging Neurosci, 2023, 15: 1165908 [2025-03-11]. https://pubmed.ncbi.nlm.nih.gov/37448688/. DOI: 10.3389/fnagi.2023.1165908.
[63]
ZACHAROPOULOS G, OHMANN K, IHSSEN N, et al. The role of outgroup homogeneity and the neurodynamics of the frontal cortex during beauty comparisons[J]. Soc Neurosci, 2023, 18(6): 382-392. DOI: 10.1080/17470919.2023.2242098.
[64]
MA S J, CHENG W T, WANG N, et al. Study on the responsiveness of resting-state brain networks to acupuncture at Hegu (LI4) and Taichong (LR3) points in patients with disorders of consciousness[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2017, 23(4): 528-531. DOI: 10.19945/j.cnki.issn.1006-3250.2017.04.033.
[65]
LUCIANA M, COLLINS P F. Neuroplasticity, the Prefrontal Cortex, and Psychopathology-Related Deviations in Cognitive Control[J]. Annu Rev Clin Psychol, 2022, 18: 443-469. DOI: 10.1146/annurev-clinpsy-081219-111203.
[66]
WU M T, HSIEH J C, XIONG J, et al. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain--preli minary experience[J]. Radiology, 1999, 212(1): 133-141. DOI: 10.1148/radiology.212.1.r99jl04133.
[67]
LOHMAN T, KAPOOR A, ENGSTROM A C, et al. Central autonomic network dysfunction and plasma Alzheimer's disease biomarkers in older adults[J/OL]. Alzheimers Res Ther, 2024, 16(1): 124 [2025-03-11]. https://doi.org/10.1186/s13195-024-01486-9. DOI: 10.1186/s13195-024-01486-9.
[68]
XU M, LIN R, WEN H, WANG Y, et al. Electroacupuncture Enhances the Functional Connectivity of Limbic System to Neocortex in the 5xFAD Mouse Model of Alzheimer's Disease[J]. Neuroscience, 2024, 544: 28-38. DOI: 10.1016/j.neuroscience.2024.02.025.

PREV Advances in brain MRI research on the association between chronic low back pain and cognitive decline
NEXT Research advances in the integration of multimodal MRI and artificial intelligence for diagnosis and conversion prediction of mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn