Share:
Share this content in WeChat
X
Review
Research progress on evaluating glymphatic system function in sleep disorder patients based on DTI-ALPS
WANG Yuzhu  CHEN Wen  YANG Bo 

DOI:10.12015/issn.1674-8034.2025.12.028.


[Abstract] Sleep disorders (SD) are closely linked to neurological diseases and cognitive decline, and their pathological mechanism may be related to dysfunction of the glymphatic system (GS). The GS clears metabolic waste from the brain through perivascular space(PVS) pathways, and sleep is considered a key physiological process regulating its function. In recent years, diffusion tensor imaging along the perivascular space (DTI-ALPS), as a non-invasive imaging technique, has been widely used to assess GS function and has demonstrated significant research value in the field of SD. This review summarizes the principles of DTI-ALPS and its latest research advances in SD, aiming to clarify the relationship between SD and GS function while providing valuable insights for future studies.
[Keywords] sleep disorder;glymphatic system;magnetic resonance imaging;diffusion tensor imaging analysis along the perivascular space

WANG Yuzhu1, 2   CHEN Wen1, 2   YANG Bo1*  

1 Department of Radiological Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China, Shiyan 442000, China

2 School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, China

Corresponding author: YANG B, E-mail: yangbo@whu.edu.cn

Conflicts of interest   None.

Received  2025-08-29
Accepted  2025-11-27
DOI: 10.12015/issn.1674-8034.2025.12.028
DOI:10.12015/issn.1674-8034.2025.12.028.

[1]
GOTTESMAN R F, LUTSEY P L, BENVENISTE H, et al. Impact of Sleep Disorders and Disturbed Sleep on Brain Health: A Scientific Statement from the American Heart Association[J/OL]. Stroke, 2024, 55(3): e61-e76 [2025-08-29]. https://www.ncbi.nlm.nih.gov/pubmed/38235581. DOI: 10.1161/str.0000000000000453.
[2]
SATEIA M J. International classification of sleep disorders-third edition: highlights and modifications[J]. Chest, 2014, 146(5): 1387-1394. DOI: 10.1378/chest.14-0970.
[3]
JI K H, YUN C H. Brain Health in Sleep Disorders[J]. Sleep Med Clin, 2025, 20(1): 57-72. DOI: 10.1016/j.jsmc.2024.10.004.
[4]
SCHIPPER S B J, VAN VEEN M M, ELDERS P J M, et al. Sleep disorders in people with type 2 diabetes and associated health outcomes: a review of the literature[J]. Diabetologia, 2021, 64(11): 2367-2377. DOI: 10.1007/s00125-021-05541-0.
[5]
RÉMI J, POLLMÄCHER T, SPIEGELHALDER K, et al. Sleep-Related Disorders in Neurology and Psychiatry[J]. Dtsch Arztebl Int, 2019, 116(41): 681-688. DOI: 10.3238/arztebl.2019.0681.
[6]
GUO Y, BORK P A R, NEDERGAARD M, et al. Dynamics of brain valves: ostensible rectification mechanisms for cerebrospinal fluid flow[J/OL]. J R Soc Interface, 2025, 22(231): 20250419 [2025-08-29]. https://doi.org/10.1098/rsif.2025.0419. DOI: 10.1098/rsif.2025.0419.
[7]
QUE M, LI Y, WANG X, et al. Role of Astrocytes in Sleep Deprivation: Accomplices, Resisters, or Bystanders?[J/OL]. Front Cell Neurosci, 2023, 17: 1188306 [2025-08-29]. http://www.webofknowledge.com/. DOI: 10.3389/fncel.2023.1188306.
[8]
DING Z, FAN X, ZHANG Y, et al. The glymphatic system: a new perspective on brain diseases[J/OL]. Front Aging Neurosci, 2023, 15: 1179988 [2025-08-29]. https://doi.org/10.3389/fnagi.2023.1179988. DOI: 10.3389/fnagi.2023.1179988.
[9]
HABLITZ L M, PLÁ V, GIANNETTO M, et al. Circadian control of brain glymphatic and lymphatic fluid flow[J/OL]. Nat Commun, 2020, 11(1): 4411 [2025-08-29]. https://doi.org/10.1038/s41467-020-18115-2. DOI: 10.1038/s41467-020-18115-2.
[10]
SRIRAM S, CARSTENS K, DEWING W, et al. Astrocyte Regulation of Extracellular Space Parameters Across the Sleep-Wake Cycle[J/OL]. Front Cell Neurosci, 2024, 18: 1401698 [2025-08-29]. https://www.frontiersin.org/articles/10.3389/fncel.2024.1401698/full. DOI: 10.3389/fncel.2024.1401698.
[11]
ZHANG D, LI X, LI B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders[J/OL]. Front Aging Neurosci, 2022, 14: 873697 [2025-08-29]. http://www.webofknowledge.com/. DOI: 10.3389/fnagi.2022.873697.
[12]
NEDERGAARD M, GOLDMAN S A. Glymphatic Failure As a Final Common Pathway to Dementia[J]. Science, 2020, 370(6512): 50-56. DOI: 10.1126/science.abb8739.
[13]
DAUVILLIERS Y. Hypocretin/Orexin, Sleep and Alzheimer's Disease[J]. Front Neurol Neurosci, 2021, 45: 139-149. DOI: 10.1159/000514967.
[14]
MAIESE K. Sleep Disorders, Neurodegeneration, Glymphatic Pathways, and Circadian Rhythm Disruption[J]. Curr Neurovasc Res, 2021, 18(3): 269-270. DOI: 10.2174/1567202618666210720145728.
[15]
CHONG P L H, GARIC D, SHEN M D, et al. Sleep, Cerebrospinal Fluid, and the Glymphatic System: A Systematic Review[J/OL]. Sleep Med Rev, 2022, 61: 101572 [2025-08-29]. https://doi.org/10.1016/j.smrv.2021.101572. DOI: 10.1016/j.smrv.2021.101572.
[16]
NIU X L, WANG C Y, LIU H Q, et al. Advances in the application of DTI-ALPS in brain glymphoid system related neurological diseases[J]. Chin J Magn Reson Imaging, 2024, 15(5): 192-197. DOI: 10.12015/issn.1674-8034.2024.05.031.
[17]
WANG S, SUN S Y, LIU H, et al. Research progress in the evaluation of glymphatic system function by the DTI-ALPS method[J]. J Cent South Univ (Med Sci), 2023, 48(8): 1260-1266. DOI: 10.11817/j.issn.1672-7347.2023.230091.
[18]
ZHU X Y, ZHOU T Y, HUANG Q, et al. Research progress on the glymphatic system of patients with central nervous system diseases based on diffusion tensor image analysis along the perivascular space[J]. Chin J Magn Reson Imaging, 2024, 15(6): 166-171. DOI: 10.12015/issn.1674-8034.2024.06.026.
[19]
TAOKA T, ITO R, NAKAMICHI R, et al. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple condition acquisition experiment (CHAMONIX) study[J]. Jpn J Radiol, 2022, 40(2): 147-158. DOI: 10.1007/s11604-021-01187-5.
[20]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[21]
ULLOA P, RUDOLF J C, KREMER J, et al. Influence of orientation, size and shape of the region of interest in diffusion MRI along perivascular spaces index[J]. Magma (New York, N.Y.), 2025, 38(5): 761-769. DOI: 10.1007/s10334-025-01248-0.
[22]
BOTTA D, HUTUCA I, GHOUL E E, et al. Emerging non-invasive MRI techniques for glymphatic system assessment in neurodegenerative disease[J/OL]. J Neuro Radiol, 2025, 52(3): 101322 [2025-08-29]. https://doi.org/10.1016/j.neurad.2025.101322. DOI: 10.1016/j.neurad.2025.101322.
[23]
NAGANAWA S, TAOKA T. The Glymphatic System: A Review of the Challenges in Visualizing its Structure and Function with MR Imaging[J]. Magn Reson Med Sci, 2022, 21(1): 182-194. DOI: 10.2463/mrms.rev.2020-0122.
[24]
LIU X, BARISANO G, SHAO X, et al. Cross-Vendor Test-Retest Validation of Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) for Evaluating Glymphatic System Function[J]. Aging Dis, 2024, 15(4): 1885-1898. DOI: 10.14336/AD.2023.0321-2.
[25]
TATEKAWA H, MATSUSHITA S, UEDA D, et al. Improved reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset[J]. Jpn J Radiol, 2023, 41(4): 393-400. DOI: 10.1007/s11604-022-01370-2.
[26]
LI S, CHEN R, CAO Z, et al. Microstructural Bias in the Assessment of Periventricular Flow as Revealed in Postmortem Brains[J/OL]. Radiology, 2025, 316(3): e250753 [2025-08-29]. https://doi.org/10.1148/radiol.250753. DOI: 10.1148/radiol.250753.
[27]
ZHANG W, ZHOU Y, WANG J, et al. Glymphatic clearance function in patients with cerebral vessel disease[J/OL]. NeuroImage, 2021, 238: 118257 [2025-08-29]. https://doi.org/10.1016/j.neuroimage.2021.118257. DOI: 10.1016/j.neuroimage.2021.118257.
[28]
YANG Y, WANG M, LUAN M, et al. Enlarged Perivascular Spaces and Age-Related Clinical Diseases[J]. Clin Interv Aging, 2023, 18: 855-867. DOI: 10.2147/CIA.S404908.
[29]
CHEN F, HENG T, FENG Q, et al. Quantitative assessment of brain glymphatic imaging features using deep learning-based EPVS segmentation and DTI-ALPS analysis in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2025, 17: 1621106 [2025-08-29]. https://doi.org/10.3389/fnagi.2025.1621106. DOI: 10.3389/fnagi.2025.1621106.
[30]
COURTNEY Y, HOCHSTETLER A, LEHTINEN M K. Choroid Plexus Pathophysiology[J]. Annu Rev Pathol, 2025, 20(1): 193-220. DOI: 10.1146/annurev-pathmechdis.
[31]
HU P, YUAN Y, ZOU Y, et al. Alterations in the DTI-ALPS Index and Choroid Plexus Volume Are Associated with Clinical Symptoms in Participants with Narcolepsy Type 1[J]. Sleep Med, 2024, 124: 471-478. DOI: 10.1016/j.sleep.2024.10.019.
[32]
CARREIRA FIGUEIREDO I, BORGAN F, PASTERNAK O, et al. White-matter free-water diffusion MRI in schizophrenia: a systematic review and meta-analysis[J]. Neuropsychopharmacology, 2022, 47(7): 1413-1420. DOI: 10.1038/s41386-022-01272x.
[33]
LI H, JACOB M A, CAI M, et al. Perivascular Spaces, Diffusivity Along Perivascular Spaces, and Free Water in Cerebral Small Vessel Disease[J/OL]. Neurology, 2024, 102(9): e209306 [2025-08-29]. https://doi.org/10.1212/WNL.0000000000209306. DOI: 10.1212/WNL.0000000000209306.
[34]
KAMAGATA K, ANDICA C, TAKABAYASHI K, et al. Association of MRI Indices of Glymphatic System With Amyloid Deposition and Cognition in Mild Cognitive Impairment and Alzheimer Disease[J/OL]. Neurology, 2022, 99(24): e2648-e2660 [2025-08-29]. https://doi.org/10.1212/WNL.0000000000201300. DOI: 10.1212/WNL.0000000000201300.
[35]
HAN F, BROWN G L, ZHU Y, et al. Decoupling of Global Brain Activity and Cerebrospinal Fluid Flow in Parkinson's Disease Cognitive Decline[J]. Mov Disord, 2021, 36(9): 2066-2076. DOI: 10.1002/mds.28643.
[36]
WANG Y, BARTELS H M, NELSON L D. A Systematic Review of ASL Perfusion MRI in Mild TBI[J]. Neuropsychol Rev, 2023, 33(1): 160-191. DOI: 10.1007/s11065-02009451-7.
[37]
IIMA M. Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future Trends[J]. Magn Reson Med Sci, 2021, 20(2): 125-138. DOI: 10.2463/mrms.rev.2019-0124.
[38]
JOKIVUOLLE M, MAHMOOD F, MADSEN K H, et al. Assessing tumor microstructure with time-dependent diffusion imaging: Considerations and feasibility on clinical MRI and MRI-Linac[J]. Med Phys, 2025, 52(1): 346-361. DOI: 10.1002/mp.17453.
[39]
LI X, HUANG W, HOLMES J H. Dynamic Contrast-Enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.
[40]
CAO X L, WANG S B, ZHONG B L, et al. The prevalence of insomnia in the general population in China: A meta-analysis[J/OL]. PLoS One, 2017, 12(2): e0170772 [2025-08-29]. https://doi.org/10.1371/journal.pone.0170772. DOI: 10.1371/journal.pone.0170772.
[41]
XIONG R, FENG J, ZHU H, et al. Evaluation of glymphatic system dysfunction in patients with insomnia via diffusion tensor image analysis along the perivascular space[J]. Quant Imaging Med Surg, 2025, 15(2): 1114-1124. DOI: 10.21037/qims-24-1447.
[42]
ZHOU Y, YI M, LI X, et al. Enlarged Choroid Plexus Related to Atrophy of Hippocampal Subfield Volumes and Glymphatic Dysfunction in Benzodiazepine Use Disorder[J/OL]. Br J Clin Pharmacol, 2024 [2025-08-29]. https://www.ncbi.nlm.nih.gov/pubmed/39501679. DOI: 10.1111/bcp.16328.
[43]
JIN Y, ZHANG W, YU M, et al. Glymphatic System Dysfunction in Middle-Aged and Elderly Chronic Insomnia Patients with Cognitive Impairment Evidenced by Diffusion Tensor Imaging along the Perivascular Space (DTI-ALPS)[J]. Sleep Med, 2024, 115: 145-151. DOI: 10.1016/j.sleep.2024.01.028.
[44]
TAOKA T, IWAMOTO K, MIYATA S, et al. MR Imaging Indices for Brain Interstitial Fluid Dynamics and the Effects of Orexin Antagonists on Sleep[J/OL]. Magn Reson Med Sci, 2025 [2025-08-29]. https://doi.org/10.2463/mrms.mp.2024-0176. DOI: 10.2463/mrms.mp.2024-0176.
[45]
SIOW T Y, TOH C H, HSU J L, et al. Association of Sleep, Neuropsychological Performance, and Gray Matter Volume With Glymphatic Function in Community-Dwelling Older Adults[J/OL]. Neurology, 2022, 98(8): e829-e838 [2025-08-29]. https://doi.org/10.1212/WNL.0000000000013215. DOI: 10.1212/WNL.0000000000013215.
[46]
ZHANG Z N, CHENG S H, WANG H X, et al. Association of MRI indexes of brain glymphatic function with sleep status in insomnia patients disorders and the effects of repetitive transcranial magnetic stimulation treatment on them[J]. Chin J Magn Reson Imaging, 2025, 16(5): 88-95. DOI: 10.12015/issn.1674-8034.2025.05.014.
[47]
ZHANG C, ZHENG Y, JIANG G, et al. Enhancement of glymphatic function and cognition in chronic insomnia using low-frequency rTMS[J/OL]. Sleep, 2025 [2025-08-29]. https://doi.org/10.1093/sleep/zsaf083. DOI: 10.1093/sleep/zsaf083.
[48]
LÉVY P, KOHLER M, MCNICHOLAS W T, et al. Obstructive sleep apnoea syndrome[J/OL]. Nat Rev Dis Primers, 2015, 1: 15015 [2025-08-29]. https://doi.org/10.1038/nrdp.2015.15. DOI: 10.1038/nrdp.2015.15.
[49]
GAMBINO F, ZAMMUTO M M, VIRZÌ A, et al. Treatment options in obstructive sleep apnea[J]. Intern Emerg Med, 2022, 17(4): 971-978. DOI: 10.1007/s11739-022-02983-1.
[50]
LEE H J, LEE D A, SHIN K J, et al. Glymphatic system dysfunction in obstructive sleep apnea evidenced by DTI-ALPS[J]. Sleep Med, 2022, 89: 176-181. DOI: 10.1016/j.sleep.2021.12.013.
[51]
ROY B, NUNEZ A, AYSOLA R S, et al. Impaired Glymphatic System Actions in Obstructive Sleep Apnea Adults[J/OL]. Front Neurosci, 2022, 16: 884234 [2025-08-29]. https://www.frontiersin.org/articles/10.3389/fnins.2022.884234/full. DOI: 10.3389/fnins.2022.884234.
[52]
XIONG Z, BAI M, WANG Z, et al. Resting-State Fmri Network Efficiency As a Mediator in the Relationship Between the Glymphatic System and Cognitive Function in Obstructive Sleep Apnea Hypopnea Syndrome: Insights from a DTI-ALPS Investigation[J/OL]. Sleep Med, 2024, 119: 250-257 [2025-08-29]. https://doi.org/10.1016/j.sleep.2024.05.009. DOI: 10.1016/j.sleep.2024.05.009.
[53]
LIN S, LIN X, CHEN S, et al. Association of MRI Indexes of the Perivascular Space Network and Cognitive Impairment in Patients with Obstructive Sleep Apnea[J/OL]. Radiology, 2024, 311(3): e232274 [2025-08-29]. https://api.crossref.org/works/10.1148/radiol.232274. DOI: 10.1148/radiol.232274.
[54]
ZHANG M, HU X, WU H, et al. Narcolepsy: a machine learning bibliometric analysis (1996-2024)[J/OL]. Front Neurol, 2025, 16: 1505574 [2025-08-29]. https://doi.org/10.3389/fneur.2025.1505574. DOI: 10.3389/fneur.2025.1505574.
[55]
GUMELER E, AYGUN E, TEZER F I, et al. Assessment of Glymphatic Function in Narcolepsy Using DTI-ALPS Index[J]. Sleep Med, 2023, 101: 522-527. DOI: 10.1016/j.sleep.2022.12.002.
[56]
VAN HEESE E M, GOOL J K, LAMMERS G J, et al. MRI-based Surrogates of Brain Clearance in Narcolepsy Type 1[J/OL]. J Sleep Res, 2025: e14479 [2025-08-29]. https://doi.org/10.1111/jsr.14479. DOI: 10.1101/2024.11.04.24316690.
[57]
HU P X, ZOU Y, YUAN Y Q, et al. Analysis of changes in glymphatic system function in different types of narcolepsy patients based on the DTI-ALPS index[J]. Radiol Practice, 2025, 40(3): 295-301. DOI: 10.13609/j.cnki.1000-0313.2025.03.002.
[58]
FLEETHAM J A, FLEMING J A E. Parasomnias[J/OL]. CMAJ, 2014, 186(8): E273-E280 [2025-08-29]. https://doi.org/10.1503/cmaj.120808. DOI: 10.1503/cmaj.120808.
[59]
HU M T. REM sleep behavior disorder (RBD)[J/OL]. Neurobiol Dis, 2020, 143: 104996 [2025-08-29]. https://doi.org/10.1016/j.nbd.2020.104996. DOI: 10.1016/j.nbd.2020.104996.
[60]
LEE D A, LEE H J, PARK K M. Glymphatic Dysfunction in Isolated REM Sleep Behavior Disorder[J]. Acta Neurol Scand, 2022, 145: 464-470. DOI: 10.1111/ane.13573.
[61]
SI X, GUO T, WANG Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2022, 8(1): 54 [2025-08-29]. https://doi.org/10.1038/s41531-022-00316-9. DOI: 10.1038/s41531-022-00316-9.
[62]
BAE Y J, KIM J M, CHOI B S, et al. Altered Brain Glymphatic Flow at Diffusion-Tensor MRI in Rapid Eye Movement Sleep Behavior Disorder[J/OL]. Radiology, 2023, 307(5): e221848 [2025-08-29]. https://www.ncbi.nlm.nih.gov/pubmed/37158722. DOI: 10.1148/radiol.221848.
[63]
MANCONI M, GARCIA-BORREGUERO D, SCHORMAIR B, et al. Restless legs syndrome[J/OL]. Nat Rev Dis Primers, 2021, 7(1): 80 [2025-08-29]. https://doi.org/10.1038/s41572-021-00311-z. DOI: 10.1038/s41572-021-00311-z.
[64]
PARK K M, KIM K T, LEE D A, et al. Glymphatic System Dysfunction in Restless Legs Syndrome: Evidenced by Diffusion Tensor Imaging along the Perivascular Space[J/OL]. Sleep, 2023, 46(11): zsad239 [2025-08-29]. https://www.ncbi.nlm.nih.gov/pubmed/37702251. DOI: 10.1093/sleep/zsad239.
[65]
SCOTT-MASSEY A, BOAG M K, MAGNIER A, et al. Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson's Disease[J/OL]. Int J Mol Sci, 2022, 23(21): 12928 [2025-08-29]. https://doi.org/10.3390/ijms232112928. DOI: 10.3390/ijms232112928.
[66]
GUI Q, MENG J, SHEN M, et al. Relationship of Glymphatic Function with Cognitive Impairment, Sleep Disorders, Anxiety and Depression in Patients with Parkinson's Disease[J/OL]. Neuropsychiatr Dis Treat, 2024, 20: 1809-1821. https://doi.org/10.2147/NDT.S480183. DOI: 10.2147/NDT.S480183.
[67]
MEINHOLD L, GENNARI A G, BAUMANN-VOGEL H, et al. T2 MRI visible perivascular spaces in Parkinson's disease: clinical significance and association with polysomnography measured sleep[J/OL]. Sleep, 2025, 48(1): zsae233 [2025-08-29]. https://doi.org/10.1093/sleep/zsae233. DOI: 10.1093/sleep/zsae233.
[68]
LI Y, ZHANG T, WANG C, et al. The Impact of Sleep Disorders on Glymphatic Function in Parkinson's Disease Using Diffusion Tensor MRI[J/OL]. Acad Radiol, 2025, 32(4): 2209-2219. DOI: 10.1016/j.acra.2024.11.030.
[69]
SHANG Y, YU L, XING H, et al. Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) Demonstrates That Sleep Disorders Exacerbate Glymphatic Circulatory Impairment and Cognitive Impairment in Patients with Alzheimer's Disease[J]. Nat Sci Sleep, 2024, 16: 2205-2215. DOI: 10.2147/NSS.S496607.
[70]
TAO Y, ZHOU Y, LI W, et al. Altered default mode network and glymphatic function in insomnia with depression: A multimodal MRI study[J/OL]. Sleep Med, 2025, 131: 106482 [2025-08-29]. https://doi.org/10.1016/j.sleep.2025.106482. DOI: 10.1016/j.sleep.2025.106482.
[71]
HAUGLUND N L, ANDERSEN M, TOKARSKA K, et al. Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep[J/OL]. Cell, 2025, 188(3): 606-622.e17 [2025-08-29]. https://doi.org/10.1016/j.cell.2024.11.027. DOI: 10.1016/j.cell.2024.11.027.

PREV Research advances in the integration of multimodal MRI and artificial intelligence for diagnosis and conversion prediction of mild cognitive impairment
NEXT Research progress of synthetic MRI in clinical application of head and neck diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn