Share:
Share this content in WeChat
X
Review
Research progress of synthetic MRI in clinical application of head and neck diseases
YU Shengqi  ZHENG Bowen  ZHOU Yiheng  CHEN Siyu  ZHANG Heng  HU Shudong  WANG Peng 

DOI:10.12015/issn.1674-8034.2025.12.029.


[Abstract] Synthetic magnetic resonance imaging (SyMRI) is an emerging quantitative technique that can simultaneously obtain a variety of relaxation parameters and multiple contrast-weighted images through a single scan, which can be used for quantitative and qualitative analysis of the microscopic histopathological and macroscopic morphological characteristics of lesions, it has been widely used in the diagnosis and therapeutic effect evaluation of head and neck diseases. However, the number of cases in these studies is relatively small, and it is still necessary to verify them with multi-center and large-sample data. At present, no relevant review on the application progress of SyMRI technology in head and neck diseases has been found at home and abroad. This article systematically introduces the technical principles, biology significance of quantitative parameter and application progress of SyMRI in the head and neck cancer, illustrating its technical advantages and limitations, future guide and clinical application of this quantitative imaging technology.
[Keywords] magnetic resonance imaging;synthetic magnetic resonance imaging;head and neck tumors;salivary gland tumors;nasopharyngeal carcinoma;sinus tumors;thyroid carcinoma;lymph node metastasis

YU Shengqi1, 2   ZHENG Bowen1, 2   ZHOU Yiheng1, 2   CHEN Siyu3   ZHANG Heng1   HU Shudong1   WANG Peng1*  

1 Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China

2 Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China

3 Department of Function, Affiliated Hospital of Jiangnan University, Wuxi 214122, China

Corresponding author: WANG P, E-mail: 492320073@qq.com

Conflicts of interest   None.

Received  2025-09-29
Accepted  2025-11-27
DOI: 10.12015/issn.1674-8034.2025.12.029
DOI:10.12015/issn.1674-8034.2025.12.029.

[1]
MODY M D, ROCCO J W, YOM S S, et al. Head and neck cancer[J]. Lancet, 2021, 398(10318): 2289-2299. DOI: 10.1016/S0140-6736(21)01550-6.
[2]
ZHANG Z X, LI S J, WANG W J, et al. Synthetic MRI for the quantitative and morphologic assessment of head and neck tumors: a preliminary study[J/OL]. Dentomaxillofac Radiol, 2023, 52(6): 20230103 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/37427697/. DOI: 10.1259/dmfr.20230103.
[3]
PIRES T, PENDEM S, JASEEMUDHEEN M M, et al. Technical aspects and clinical applications of synthetic MRI: a scoping review[J]. Diagnosis (Berl), 2025, 12(2): 163-174. DOI: 10.1515/dx-2024-0168.
[4]
TAKUMI K, NAKANOSONO R, NAGANO H, et al. Multiparametric approach with synthetic MR imaging for diagnosing salivary gland lesions[J]. Jpn J Radiol, 2024, 42(9): 983-992. DOI: 10.1007/s11604-024-01578-4.
[5]
ZHANG H, ZHAO J, DAI J K, et al. Synthetic MRI quantitative parameters in discriminating stage T1 nasopharyngeal carcinoma and benign hyperplasia: Combination with morphological features[J/OL]. Eur J Radiol, 2024, 170: 111264 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/38103492/. DOI: 10.1016/j.ejrad.2023.111264.
[6]
XIANG Y, ZHANG Q J, CHEN X, et al. Synthetic MRI and amide proton transfer-weighted MRI for differentiating between benign and malignant sinonasal lesions[J]. Eur Radiol, 2024, 34(10): 6820-6830. DOI: 10.1007/s00330-024-10696-6.
[7]
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365.
[8]
SHARMA S, NAYAK A, THOMAS B, et al. Synthetic MR: clinical applications in neuroradiology[J]. Neuroradiology, 2025, 67(3): 509-527. DOI: 10.1007/s00234-025-03547-8.
[9]
CHEN Z H, ZHANG M Y, WANG M J, et al. Research progress of synthetic MRI in clinical diseases[J]. Chin J Magn Reson Imag, 2025, 16(7): 227-234. DOI: 10.12015/issn.1674-8034.2025.07.036.
[10]
JI S, YANG D J, LEE J, et al. Synthetic MRI: technologies and applications in neuroradiology[J]. J Magn Reson Imaging, 2022, 55(4): 1013-1025. DOI: 10.1002/jmri.27440.
[11]
MINHAS A S, OLIVER R. Magnetic resonance imaging basics[M]//Electrical Properties of Tissues. Cham: Springer International Publishing, 2022: 47-82. DOI: 10.1007/978-3-031-03873-0_3.
[12]
CHEN S Y, DAI J K, ZHAO J, et al. Synthetic MRI combined with clinicopathological characteristics for pretreatment prediction of chemoradiotherapy response in advanced nasopharyngeal carcinoma[J]. Korean J Radiol, 2025, 26(2): 135-145. DOI: 10.3348/kjr.2024.0385.
[13]
YUN Y, GUO J X, SHAO N N, et al. Synthetic MRI as a T2WI alternative in bp-MRI: comparable image quality and improved PI-RADS performance[J/OL]. Eur J Radiol, 2025, 193: 112414 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/40966860/. DOI: 10.1016/j.ejrad.2025.112414.
[14]
WU Q, ZHU L N, JIANG J S, et al. Characterization of parotid gland tumors using T2 mapping imaging: initial findings[J]. Acta Radiol, 2020, 61(5): 629-635. DOI: 10.1177/0284185119875646.
[15]
QU J M, PAN B J, SU T, et al. T1 and T2 mapping for identifying malignant lymph nodes in head and neck squamous cell carcinoma[J/OL]. Cancer Imaging, 2023, 23(1): 125 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/38105217/. DOI: 10.1186/s40644-023-00648-6.
[16]
WEI M, YANG H T, LI Z H, et al. The value of synthetic MRI for quantitative analysis in the diagnosis of cervical lymph node metastasis in thyroid cancer[J]. Acta Radiol, 2024, 65(7): 744-752. DOI: 10.1177/02841851241257775.
[17]
ZHANG Q, LIU X, HU Q Q, et al. Research progress of synthetic magnetic resonance in image evaluation of bone and joint system[J]. Radiol Pract, 2025, 40(5): 682-687. DOI: 10.13609/j.cnki.1000-0313.2025.05.021.
[18]
YANG F, LI Y J, LI X L, et al. The utility of texture analysis based on quantitative synthetic magnetic resonance imaging in nasopharyngeal carcinoma: a preliminary study[J/OL]. BMC Med Imaging, 2023, 23(1): 15 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/36698156/. DOI: 10.1186/s12880-023-00968-w.
[19]
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/33857828/. DOI: 10.1016/j.ejrad.2021.109697.
[20]
WANG P, HU S D, WANG X Y, et al. Synthetic MRI in differentiating benign from metastatic retropharyngeal lymph node: combination with diffusion-weighted imaging[J]. Eur Radiol, 2023, 33(1): 152-161. DOI: 10.1007/s00330-022-09027-4.
[21]
WEI H R, YANG F, LI Y J, et al. The value of Synthetic MRI in discriminating metastatic and non-metastatic lymph nodes in head and neck squamous cell carcinoma, compared with DWI and subjective experience[J/OL]. Eur J Radiol, 2025, 186: 112048 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/40121896/. DOI: 10.1016/j.ejrad.2025.112048.
[22]
DASH S, VYAS S, AHUJA C K, et al. Synthetic magnetic resonance-based relaxometry in differentiating central nervous system tuberculoma and glioblastoma[J/OL]. Pol J Radiol, 2025, 90: e198-e206 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/40416520/. DOI: 10.5114/pjr/202175.
[23]
BLYSTAD I, WARNTJES J M, SMEDBY Ö, et al. Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema[J/OL]. Sci Rep, 2020, 10(1): 17986 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/33093605/. DOI: 10.1038/s41598-020-75105-6.
[24]
SUN J B, KUAI X P, HUANG D W, et al. Assessment of synthetic MRI to distinguish Warthin's tumor from pleomorphic adenoma in the parotid gland: comparison of two methods of positioning the region of interest for synthetic relaxometry measurement[J/OL]. Front Oncol, 2024, 14: 1446736 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/39429473/. DOI: 10.3389/fonc.2024.1446736.
[25]
SATO T, EGUCHI Y, NORIMOTO M, et al. Diagnosis of lumbar radiculopathy using simultaneous MR neurography and apparent T2 mapping[J/OL]. J Clin Neurosci, 2020, 78: 339-346 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/32336629/. DOI: 10.1016/j.jocn.2020.04.072.
[26]
ZHANG H, HU L, GE Y X, et al. Synthetic MRI in differential diagnosis of stage T1 in patients with nasopharyngeal carcinoma and lymphoid hyperplasia[J]. J Pract Radiol, 2023, 39(9): 1401-1404, 1408. DOI: 10.3969/j.issn.1002-1671.2023.09.004.
[27]
ZHU L, WANG C, YANG G X, et al. Imaging diagnosis and functional MRI evaluation of parotid tumor lesions[J]. Chin J Radiol, 2022, 56(5): 587-590. DOI: 10.3760/cma.j.cn112149-20220310-00223.
[28]
JIANG W H, DU S Y, GAO S, et al. Correlation between synthetic MRI relaxometry and apparent diffusion coefficient in breast cancer subtypes with different neoadjuvant therapy response[J/OL]. Insights Imaging, 2023, 14(1): 162 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/37775610/. DOI: 10.1186/s13244-023-01492-9.
[29]
WEN B H, ZHU J, ZHANG Z X, et al. T2 mapping and readout segmentation of long variable echo-train diffusion-weighted imaging for the differentiation of parotid gland tumors[J/OL]. Eur J Radiol, 2022, 151: 110265 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/35472650/. DOI: 10.1016/j.ejrad.2022.110265.
[30]
LIAN S S, ZHANG C, CHI J, et al. Differentiation between nasopharyngeal carcinoma and lymphoma at the primary site using whole-tumor histogram analysis of apparent diffusion coefficient maps[J]. Radiol Med, 2020, 125(7): 647-653. DOI: 10.1007/s11547-020-01152-8.
[31]
CHENG J F, SU W Z, WANG Y Z, et al. Magnetic resonance imaging based on radiomics for differentiating T1-category nasopharyngeal carcinoma from nasopharyngeal lymphoid hyperplasia: a multicenter study[J]. Jpn J Radiol, 2024, 42(7): 709-719. DOI: 10.1007/s11604-024-01544-0.
[32]
SHI Y X, LI Z, WANG L, et al. Artificial intelligence-assisted detection of nasopharyngeal carcinoma on endoscopic images: a national, multicentre, model development and validation study[J/OL]. Lancet Digit Health, 2025, 7(6): 100869 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/40544083/. DOI: 10.1016/j.landig.2025.03.001.
[33]
ZOU J M, ZHANG J, WANG P, et al. Readout segmentation of long variable echo-trains diffusion weighted imaging for the differential diagnosis of stage T1 nasopharyngeal carcinoma and lymphoid hyperplasia[J]. J Pract Radiol, 2021, 37(2): 199-202. DOI: 10.3969/j.issn.1002-1671.2021.02.007.
[34]
ZHANG H, HU L, QIN F H, et al. Synthetic MRI and diffusion-weighted imaging for differentiating nasopharyngeal lymphoma from nasopharyngeal carcinoma: combination with morphological features[J]. Br J Radiol, 2024, 97(1159): 1278-1285. DOI: 10.1093/bjr/tqae095.
[35]
ZHOU Y H, ZHENG B W, DAI J K, et al. Whole-tumor histogram analysis of synthetic MRI relaxation maps for nasopharyngeal carcinoma: correlations with histopathologic components[J]. Jpn J Radiol, 2025, 43(11): 1803-1811. DOI: 10.1007/s11604-025-01824-3.
[36]
TOSONI A, FOSCHINI M P, PASQUINI E, et al. Emerging strategies and advances in the management of sinonasal carcinoma[J]. Expert Rev Anticancer Ther, 2025, 25(10): 1165-1179. DOI: 10.1080/14737140.2025.2532852.
[37]
KWIECIEN C, WORKMAN A D, WILENSKY J, et al. Longer-term surveillance imaging and endoscopy critical for majority of patients in detection of sinonasal malignancy recurrence[J]. Int Forum Allergy Rhinol, 2024, 14(11): 1739-1745. DOI: 10.1002/alr.23412.
[38]
WANG P, TANG Z H, XIAO Z B, et al. Dual-energy CT in differentiating benign sinonasal lesions from malignant ones: comparison with simulated single-energy CT, conventional MRI, and DWI[J]. Eur Radiol, 2022, 32(2): 1095-1105. DOI: 10.1007/s00330-021-08159-3.
[39]
XIANG Y, ZHANG Y L, LI X H, et al. Whole-tumor histogram analysis of synthetic MRI for discriminating benign from malignant sinonasal tumors: correlations with histopathologic factors[J]. Quant Imaging Med Surg, 2025, 15(8): 7392-7405. DOI: 10.21037/qims-2024-2564.
[40]
WANG M, PAN M, LI Y S, et al. ANXA6/TRPV2 axis promotes lymphatic metastasis in head and neck squamous cell carcinoma by inducing autophagy[J/OL]. Exp Hematol Oncol, 2023, 12(1): 43 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/37138336/. DOI: 10.1186/s40164-023-00406-1.
[41]
QIN H, QUE Q, LIN P, et al. Magnetic resonance imaging (MRI) radiomics of papillary thyroid cancer (PTC): a comparison of predictive performance of multiple classifiers modeling to identify cervical lymph node metastases before surgery[J]. Radiol Med, 2021, 126(10): 1312-1327. DOI: 10.1007/s11547-021-01393-1.
[42]
YANG F, LI Y J, LEI H Z, et al. Histogram analysis of synthetic magnetic resonance imaging: Correlations with histopathological factors in head and neck squamous cell carcinoma[J/OL]. Eur J Radiol, 2023, 160: 110715 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/36753947/. DOI: 10.1016/j.ejrad.2023.110715.
[43]
OYOUNI A A A. Human papillomavirus in cancer: Infection, disease transmission, and progress in vaccines[J]. J Infect Public Health, 2023, 16(4): 626-631. DOI: 10.1016/j.jiph.2023.02.014.
[44]
DE PERROT T, LENOIR V, AYLLÓN M D, et al. Apparent diffusion coefficient histograms of human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinoma: assessment of tumor heterogeneity and comparison with histopathology[J]. AJNR Am J Neuroradiol, 2017, 38(11): 2153-2160. DOI: 10.3174/ajnr.A5370.
[45]
SHAKER N, MANSOORI P, FATTAH Y H, et al. P16 and HPV status in head and neck sarcomas and sarcomatoid carcinomas[J/OL]. Ann Diagn Pathol, 2024, 71: 152307 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/38626591/. DOI: 10.1016/j.anndiagpath.2024.152307.
[46]
TSAI C C, HSU Y C, CHU T Y, et al. Immune evasion in head and neck squamous cell carcinoma: roles of cancer-associated fibroblasts, immune checkpoints, and TP53 mutations in the tumor microenvironment[J/OL]. Cancers (Basel), 2025, 17(15): 2590 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/40805285/. DOI: 10.3390/cancers17152590.
[47]
VAN DER HULST H J, JANSEN R W, VENS C, et al. The prediction of biological features using magnetic resonance imaging in head and neck squamous cell carcinoma: a systematic review and meta-analysis[J/OL]. Cancers (Basel), 2023, 15(20): 5077 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/37894447/. DOI: 10.3390/cancers15205077.
[48]
CHEN W Y, LIN G H, CHEN Y J, et al. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study[J/OL]. BMC Cancer, 2024, 24(1): 418 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/38580939/. DOI: 10.1186/s12885-024-12026-x.
[49]
YANG F, LI X L, LI Y J, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors in nasopharyngeal carcinoma[J]. Eur Radiol, 2023, 33(8): 5344-5354. DOI: 10.1007/s00330-023-09553-9.
[50]
BELFIORE M P, NARDONE V, D'ONOFRIO I, et al. Diffusion-weighted imaging and apparent diffusion coefficient mapping of head and neck lymph node metastasis: a systematic review[J]. Explor Target Antitumor Ther, 2022, 3(6): 734-745. DOI: 10.37349/etat.2022.00110.
[51]
CAI Q, WEN Z H, HUANG Y P, et al. Investigation of synthetic magnetic resonance imaging applied in the evaluation of the tumor grade of bladder cancer[J]. J Magn Reson Imaging, 2021, 54(6): 1989-1997. DOI: 10.1002/jmri.27770.
[52]
CUI Y D, HAN S Y, LIU M, et al. Diagnosis and grading of prostate cancer by relaxation maps from synthetic MRI[J]. J Magn Reson Imaging, 2020, 52(2): 552-564. DOI: 10.1002/jmri.27075.
[53]
SUN S Y, DING Y Y, LI Z L, et al. Multiparameter MRI model with DCE-MRI, DWI, and synthetic MRI improves the diagnostic performance of BI-RADS 4 lesions[J/OL]. Front Oncol, 2021, 11: 699127 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/34722246/. DOI: 10.3389/fonc.2021.699127.
[54]
WEN B H, ZHANG Z X, ZHU J, et al. Synthetic MRI plus FSE-PROPELLER DWI for differentiating malignant from benign head and neck tumors: a preliminary study[J/OL]. Front Oncol, 2023, 13: 1225420 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/37829331/. DOI: 10.3389/fonc.2023.1225420.
[55]
HEO H Y, TEE Y K, HARSTON G, et al. Amide proton transfer imaging in stroke[J/OL]. NMR Biomed, 2023, 36(6): e4734 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/35322482/. DOI: 10.1002/nbm.4734.
[56]
YU L, LI C M, LUO X J, et al. Differentiation of malignant and benign head and neck tumors with amide proton transfer-weighted MR imaging[J]. Mol Imaging Biol, 2019, 21(2): 348-355. DOI: 10.1007/s11307-018-1248-1.
[57]
WANG F, XIANG Y S, WU P, et al. Evaluation of amide proton transfer imaging for bladder cancer histopathologic features: a comparative study with diffusion- weighted imaging[J/OL]. Eur J Radiol, 2023, 159: 110664 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/36574743/. DOI: 10.1016/j.ejrad.2022.110664.
[58]
KONAR A S, PAUDYAL R, SHAH A D, et al. Qualitative and quantitative performance of magnetic resonance image compilation (MAGiC) method: an exploratory analysis for head and neck imaging[J/OL]. Cancers (Basel), 2022, 14(15): 3624 [2025-09-28]. https://pubmed.ncbi.nlm.nih.gov/35892883/. DOI: 10.3390/cancers14153624.

PREV Research progress on evaluating glymphatic system function in sleep disorder patients based on DTI-ALPS
NEXT Research progress in using radiomics to predict tumor infiltrating lymphocytes in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn