Share:
Share this content in WeChat
X
Review
Recent advances in brown adipose tissue imaging using magnetic resonance techniques and their emerging clinical applications
PAN Rutong  OUYANG Qunhui  LIN Chulan  WANG Wei  ZHAN Wenfeng  LI Wuming  ZENG Kejing  CHEN Bo  JIANG Guihua  LIU Ping 

DOI:10.12015/issn.1674-8034.2025.12.033.


[Abstract] Brown adipose tissue (BAT) plays a critical role in thermoregulation and energy metabolism, and its dysfunction is closely associated with various metabolic diseases, such as obesity, type 2 diabetes (T2DM), cardiovascular diseases (CVD). However, the lack of accurate, non-invasive imaging techniques capable of quantifying and visualizing BAT distribution and functional activity has significantly hindered its clinical translation and application in health management and disease prevention. Magnetic resonance imaging (MRI), with its advantages of non-invasiveness, high spatial resolution, superior soft-tissue contrast, and capability for quantitative and visual analysis, has emerged as a highly promising modality for advancing BAT research and clinical application. This review systematically summarizes recent advances in multimodal MRI techniques for BAT quantification, including chemical shift encoded imaging, magnetic resonance spectroscopy, and chemical exchange saturation transfer. It also critically examines their current applications in various conditions including obesity, CVD and cancer. Importantly, it addresses the insufficient integration of artificial intelligence and the lack of in-depth analysis of clinical application value in existing literature, while also discussing the key challenges facing current methodologies. This review aims to enhance the recognition of the value of multimodal MRI in BAT research and to provide a theoretical basis and novel perspectives for developing improved imaging protocols and promoting the integration of BAT assessment into health management and disease prevention pathways.
[Keywords] brown adipose tissue;magnetic resonance imaging;multimodal magnetic resonance imaging;fat quantification;clinical application

PAN Rutong1   OUYANG Qunhui1   LIN Chulan1   WANG Wei1   ZHAN Wenfeng1   LI Wuming1   ZENG Kejing2   CHEN Bo2   JIANG Guihua1   LIU Ping1*  

1 Department of Radiology, the Affiliated Guangdong Second Provincial People's Hospital of Jinan University, Guangzhou 510317, China

2 Department of Endocrinology, the Affiliated Guangdong Second Provincial People's Hospital of Jinan University, Guangzhou 510317, China

Corresponding author: LIU P, E-mail: ping0625liu0318@163.com

Conflicts of interest   None.

Received  2025-09-30
Accepted  2025-12-06
DOI: 10.12015/issn.1674-8034.2025.12.033
DOI:10.12015/issn.1674-8034.2025.12.033.

[1]
JALLOUL W, GRIEROSU I C, JALLOUL D, et al. Functional complexity of thermogenic adipose tissue: from thermogenesis to metabolic and fibroinflammatory crosstalk[J/OL]. Int J Mol Sci, 2025, 26(18): 9045 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/41009610/. DOI: 10.3390/ijms26189045.
[2]
CHEN L F, AMRAEE F, SADEGH-NEJADI S, et al. Molecular mechanisms linking adipose tissue-derived small extracellular vesicles/exosomes to the development or amelioration of obesity, insulin resistance, and diabetes-related complications[J/OL]. Eur J Med Res, 2025, 30(1): 1049 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/41174795/. DOI: 10.1186/s40001-025-03288-7.
[3]
CARPENTIER A C. Tracers and imaging of fatty acid and energy metabolism of human adipose tissues[J/OL]. Physiology (Bethesda), 2024, 39(2): 0 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/38113392/. DOI: 10.1152/physiol.00012.2023.
[4]
ZHANG J, KIBRET B G, VATNER D E, et al. The role of brown adipose tissue in mediating healthful longevity[J/OL]. J Cardiovasc Aging, 2024, 4(2): 17 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/39119146/. DOI: 10.20517/jca.2024.01.
[5]
KWOK T C, STIMSON R H. Human brown adipose tissue function: insights from current in vivo techniques[J/OL]. J Endocrinol, 2023, 259(1): e230017 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/37594011/. DOI: 10.1530/JOE-23-0017.
[6]
YANG J, ZHANG H L, PARHAT K, et al. Molecular imaging of brown adipose tissue mass[J/OL]. Int J Mol Sci, 2021, 22(17): 9436 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/34502347/. DOI: 10.3390/ijms22179436.
[7]
LI J H, WANG L, WU S Y, et al. Imaging brown adipose tissue: current state and future perspective[J]. Theranostics, 2025, 15(17): 9001-9018. DOI: 10.7150/thno.111643.
[8]
LIU S H, ZHANG Y, AISHA A, et al. Quantitative MRI techniques for brown adipose tissue: Current status and advances[J]. Chin J Magn Reson Imag, 2024, 15(12): 228-234. DOI: 10.12015/issn.1674-8034.2024.12.036.
[9]
SHAO S Y, ZHAO J. Current status and progression of MRI quantitative research in brown adipose tissue[J]. Chin J Magn Reson Imag, 2021, 12(6): 121-124. DOI: 10.12015/issn.1674-8034.2021.06.026.
[10]
YALIGAR J, RENGARAJ A, LE G T T, et al. Fatty acylcarnitine metabolism in brown/beige and white fats by 13C HRMAS NMR spectroscopy with metabolic interventions[J/OL]. NMR Biomed, 2025, 38(6): e70040 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/40230060/. DOI: 10.1002/nbm.70040.
[11]
DEY P, LAL H, SAHA P, et al. Molecular mediators of cold adaptation in mammalian cells[J/OL]. Commun Biol, 2025, 8: 1441 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/41062717/. DOI: 10.1038/s42003-025-08838-7.
[12]
ZIQUBU K, DLUDLA P V, MABHIDA S E, et al. Brown adipose tissue-derived metabolites and their role in regulating metabolism[J/OL]. Metabolism, 2024, 150: 155709 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/37866810/. DOI: 10.1016/j.metabol.2023.155709.
[13]
JUNKER D, SYVÄRI J, WEIDLICH D, et al. Investigation of the relationship between MR-based supraclavicular fat fraction and thyroid hormones[J]. Obes Facts, 2020, 13(3): 331-343. DOI: 10.1159/000507294.
[14]
HELD C, JUNKER D, WU M M, et al. Intraindividual difference between supraclavicular and subcutaneous proton density fat fraction is associated with cold-induced thermogenesis[J]. Quant Imaging Med Surg, 2022, 12(5): 2877-2890. DOI: 10.21037/qims-21-986.
[15]
OUWERKERK R, HAMIMI A, MATTA J, et al. Proton MR spectroscopy measurements of white and brown adipose tissue in healthy humans: relaxation parameters and unsaturated fatty acids[J]. Radiology, 2021, 299(2): 396-406. DOI: 10.1148/radiol.2021202676.
[16]
ZHONG Q L, LIU H S, FENG Y Q, et al. Detecting white adipose tissue browning in mice with in vivo R2 mapping at 9.4T MRI[J/OL]. J Lipid Res, 2025, 66(2): 100735 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/39709160/. DOI: 10.1016/j.jlr.2024.100735.
[17]
YALIGAR J, VERMA S K, GOPALAN V, et al. Dynamic contrast-enhanced MRI of brown and beige adipose tissues[J]. Magn Reson Med, 2020, 84(1): 384-395. DOI: 10.1002/mrm.28118.
[18]
CAI Z M, ZHONG Q L, FENG Y Q, et al. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging[J]. Nat Metab, 2024, 6(7): 1367-1379. DOI: 10.1038/s42255-024-01082-z.
[19]
HANKIR M K. Creating a picture of brown fat with creatine-CEST[J]. Trends Endocrinol Metab, 2025, 36(2): 102-104. DOI: 10.1016/j.tem.2024.08.013.
[20]
YU Q, HUANG S, XU T T, et al. Measuring brown fat using MRI and implications in the metabolic syndrome[J]. J Magn Reson Imaging, 2021, 54(5): 1377-1392. DOI: 10.1002/jmri.27340.
[21]
ZHANG Y X, FENG Y P, YOU C L, et al. The diagnostic value of MRI-PDFF in hepatic steatosis of patients with metabolic dysfunction-associated steatotic liver disease: a systematic review and meta-analysis[J/OL]. BMC Gastroenterol, 2025, 25(1): 451 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/40596891/. DOI: 10.1186/s12876-025-04017-4.
[22]
NIKIFORAKI K, MARIAS K. MRI methods to visualize and quantify adipose tissue in health and disease[J/OL]. Biomedicines, 2023, 11(12): 3179 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/38137400/. DOI: 10.3390/biomedicines11123179.
[23]
KOKSHAROVA E, USTYUZHANIN D, PHILIPPOV Y, et al. The relationship between brown adipose tissue content in supraclavicular fat depots and insulin sensitivity in patients with type 2 diabetes mellitus and prediabetes[J]. Diabetes Technol Ther, 2017, 19(2): 96-102. DOI: 10.1089/dia.2016.0360.
[24]
WU M M, JUNKER D, BRANCA R T, et al. Magnetic resonance imaging techniques for brown adipose tissue detection[J/OL]. Front Endocrinol (Lausanne), 2020, 11: 421 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/32849257/. DOI: 10.3389/fendo.2020.00421.
[25]
CAI Z M, ZHONG Q L, ZHANG D M, et al. Z-spectral MRI quantifies the mass and metabolic activity of adipose tissues with fat-water-fraction and amide-proton-transfer contrasts[J]. J Magn Reson Imaging, 2025, 61(4): 1905-1913. DOI: 10.1002/jmri.29598.
[26]
LI L, SCOTTI A, FANG J C, et al. Characterization of brown adipose tissue (BAT) in polycystic ovary syndrome (PCOS) patients by Z-Spectral Imaging (ZSI)[J/OL]. Eur J Radiol, 2020, 123: 108777 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/31855655/. DOI: 10.1016/j.ejrad.2019.108777.
[27]
ZHANG L, ANTONACCI M, BURANT A, et al. Absolute thermometry of human brown adipose tissue by magnetic resonance with laser polarized 129Xe[J/OL]. Commun Med (Lond), 2023, 3(1): 147 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/37848608/. DOI: 10.1038/s43856-023-00374-x.
[28]
LIU X M, ZHANG Z, SONG Y J, et al. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications[J/OL]. Front Endocrinol (Lausanne), 2023, 13: 1065263 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/36714578/. DOI: 10.3389/fendo.2022.1065263.
[29]
LIN X H, LI H. Obesity: epidemiology, pathophysiology, and therapeutics[J/OL]. Front Endocrinol (Lausanne), 2021, 12: 706978 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/34552557/. DOI: 10.3389/fendo.2021.706978.
[30]
AHMED B A, VARAH N, ONG F J, et al. Impaired cold-stimulated supraclavicular brown adipose tissue activity in young boys with obesity[J]. Diabetes, 2022, 71(6): 1193-1204. DOI: 10.2337/db21-0799.
[31]
FRANZ D, WEIDLICH D, FREITAG F, et al. Association of proton density fat fraction in adipose tissue with imaging-based and anthropometric obesity markers in adults[J]. Int J Obes, 2017, 42(2): 175-182. DOI: 10.1038/ijo.2017.194.
[32]
WANG H Y, QIN Y X, NIU J Z, et al. Evolving perspectives on evaluating obesity: from traditional methods to cutting-edge techniques[J/OL]. Ann Med, 2025, 57(1): 2472856 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/40077889/. DOI: 10.1080/07853890.2025.2472856.
[33]
FRANSSENS B T, HOOGDUIN H, LEINER T, et al. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease[J]. J Magn Reson Imag, 2017, 46(2): 497-504. DOI: 10.1002/jmri.25594.
[34]
LUNDSTRÖM E, LJUNGBERG J, ANDERSSON J, et al. Brown adipose tissue estimated with the magnetic resonance imaging fat fraction is associated with glucose metabolism in adolescents[J/OL]. Pediatr Obes, 2019, 14(9): e12531 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/31290284/. DOI: 10.1111/ijpo.12531.
[35]
FORYŚ E, DROSDZOL-COP A, MAŁECKA-TENDERA E, et al. Adipokine profile signature in adolescent girls with menstrual disorders and hyperandrogenism differs from that of regularly menstruating girls[J/OL]. J Clin Med, 2025, 14(22): 7987 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/41303021/. DOI: 10.3390/jcm14227987.
[36]
CHANG H H, ZHAO H C, YU Y, et al. The preliminary study of supraclavicular adipose tissue, liver and subcutaneous adipose tissue in PCOS and healthy women with IDEAL-IQ[J]. J Clin Radiol, 2018, 37(12): 2063-2067. DOI: 10.13437/j.cnki.jcr.2018.12.032.
[37]
RINELLA M E, LAZARUS J V, RATZIU V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J/OL]. Ann Hepatol, 2024, 29(1): 101133 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/37364816/. DOI: 10.1016/j.aohep.2023.101133.
[38]
FAN H Q, YANG B W, YANG L. Research on the impact of adipose tissue dysfunction on MAFLD and its prevention and treatment strategies[J]. Chin J Integr Tradit West Med Liver Dis, 2025, 35(5): 529-537. DOI: 10.3969/j/issn.1005-0264.2025.005.00.
[39]
ZENG K Y, BAO W Y G, WANG Y H, et al. Non-invasive evaluation of liver steatosis with imaging modalities: New techniques and applications[J]. World J Gastroenterol, 2023, 29(17): 2534-2550. DOI: 10.3748/wjg.v29.i17.2534.
[40]
AHMED B A, ONG F J, BARRA N G, et al. Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota[J/OL]. Cell Rep Med, 2021, 2(9): 100397 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/34622234/. DOI: 10.1016/j.xcrm.2021.100397.
[41]
TINT M T, MICHAEL N, SADANANTHAN S A, et al. Brown adipose tissue, adiposity, and metabolic profile in preschool children[J]. J Clin Endocrinol Metab, 2021, 106(10): 2901-2914. DOI: 10.1210/clinem/dgab447.
[42]
VAN WOERDEN G, VAN VELDHUISEN D J, MANINTVELD O C, et al. Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction[J/OL]. Circ Heart Fail, 2022, 15(3): e009238 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/34935412/. DOI: 10.1161/CIRCHEARTFAILURE.121.009238.
[43]
BECHER T, PALANISAMY S, KRAMER D J, et al. Brown adipose tissue is associated with cardiometabolic health[J]. Nat Med, 2021, 27(1): 58-65. DOI: 10.1038/s41591-020-1126-7.
[44]
FRANSSENS B T, EIKENDAL A L, LEINER T, et al. Reliability and agreement of adipose tissue fat fraction measurements with water-fat MRI in patients with manifest cardiovascular disease[J]. NMR Biomed, 2016, 29(1): 48-56. DOI: 10.1002/nbm.3444.
[45]
JIANG Y, ZHAO Y F, DAI J Y, et al. Imaging cancer-associated Cachexia: utilizing clinical imaging modalities for early diagnosis[J/OL]. Radiol Imaging Cancer, 2025, 7(4): e240291 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/40476859/. DOI: 10.1148/rycan.240291.
[46]
PEI R R, CHEN X Q, ZHAO Q, et al. Research progress on the effects of brown adipose tissue-regulated energy metabolism on tumor[J]. J Mod Oncol, 2024, 32(21): 4200-4205. DOI: 10.3969/j.issn.1672-4992.2024.21.034.
[47]
SHEN C Y, PAN J K, LIN W D, et al. Integrating magnetic resonance chemical shift imaging for localized prostate cancer risk stratification on the basis of the impact of periprostatic brown adipocytes within tumor microenvironment[J]. Ann Surg Oncol, 2025, 32(9): 6962-6973. DOI: 10.1245/s10434-025-17512-5.
[48]
GRIGORAȘ A, AMALINEI C. The role of perirenal adipose tissue in carcinogenesis-from molecular mechanism to therapeutic perspectives[J/OL]. Cancers (Basel), 2025, 17(7): 1077 [2025-09-29]. https://pubmed.ncbi.nlm.nih.gov/40227577/. DOI: 10.3390/cancers17071077.
[49]
ZHAO Y, TANG C M, CUI B H, et al. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images[J]. Quant Imaging Med Surg, 2023, 13(7): 4699-4715. DOI: 10.21037/qims-22-304.
[50]
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nat Methods, 2021, 18(2): 203-211. DOI: 10.1038/s41592-020-01008-z.
[51]
CHENG C L, WU B X, ZHANG L, et al. Automatic segmentation of the interscapular brown adipose tissue in rats based on deep learning using the dynamic magnetic resonance fat fraction images[J]. MAGMA, 2024, 37(2): 215-226. DOI: 10.1007/s10334-023-01133-8.

PREV Research progress and current status of artificial intelligence based on MR diffusion imaging technology in evaluating cervical cancer
NEXT Recent advances in brown adipose tissue imaging using magnetic resonance techniques and their emerging clinical applications
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn