Share:
Share this content in WeChat
X
Clinical Article
Alterations of spontaneous brain activity and functional connectivity in chronic smokers: A resting state magnetic resonance imaging study
LIU Yuancheng  WANG Di  ZHANG Xiaoyong  WU Mingfeng  CHEN Hanwei  LIU Xinfeng  LIAO Dan 

DOI:10.12015/issn.1674-8034.2026.01.002.


[Abstract] Objective To detect the alterations of spontaneous brain activity and functional connectivity (FC) in chronic smokers employed the method of amplitude of low-frequency fluctuation (ALFF) combined with FC.Materials and Methods A total of 27 chronic smokers and 30 healthy controls were enrolled in this current study, which was matched with age and gender. All participants underwent neuropsychological assessments and resting-state functional magnetic resonance imaging (rs-fMRI) scans. The DPABI 6.0 and SPM 12.0 software were used to analyze the brain regions with abnormal ALFF values. The brain region with abnormal ALFF values was selected as the see region of interest (ROI) for the whole brain functional connectivity analysis.Results Compared with the health controls, the chronic smokers exhibited increased ALFF value in the left superior frontal gyrus (SFG) and a decreased ALFF value in the right cerebellar hemispheres. Additionally, the current study found increased FC between the left SFG and the left parietal gyrus, and we also found increased FC between the left SFG and the right parietal gyrus (GRF correction, voxel-level P < 0.001 cluster-level P < 0.05).Conclusions Abnormal brain activity and functional connectivity of the frontal gurus, parietal gyrus and cerebellum may be the reason of addiction in chronic smokers, which may provide imaging evidence to reveal the neurobiological mechanisms in chronic smokers.
[Keywords] chronic smoking;magnetic resonance imaging;amplitude of low frequency fluctuation;functional connectivity;superior parietal gyrus;spontaneous brain activity

LIU Yuancheng   WANG Di   ZHANG Xiaoyong   WU Mingfeng   CHEN Hanwei   LIU Xinfeng   LIAO Dan*  

Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, China

Corresponding author: LIAO D, E-mail: 1478730074@qq.com

Conflicts of interest   None.

Received  2025-09-01
Accepted  2025-12-11
DOI: 10.12015/issn.1674-8034.2026.01.002
DOI:10.12015/issn.1674-8034.2026.01.002.

[1]
THIELKING A, QIAN Y, OLIVIER S, et al. Changes in tobacco use in rural South Africa during the 2020 tobacco sales ban: an analysis of current and previous behaviours using cross-sectional data[J]. Tob Control, 2025, 84(3): 229-232. DOI: 10.1136/tc-2025-059357.
[2]
SELOVE R, COMBS T, HECKMAN C J, et al. A Scoping Review of Implementation Science in Planning and Delivering Tobacco Control Interventions in the United States from 2000 to 2020: Frameworks, Intervention Characteristics, and Health Equity Considerations[J]. Nicotine Tob Res, 2025, 52(5): 125-129. DOI: 10.1093/ntr/ntaf155.
[3]
FATHI J T, CINCIRIPINI P M, DEPRIMO M J, et al. The American Cancer Society National Lung Cancer Roundtable strategic plan: Tobacco treatment in the context of lung cancer screening[J/OL]. Cancer, 2025, 131(18): e35972 [2025-09-01]. https://doi.org/10.1002/cncr.35972. DOI: 10.1002/cncr.35972.
[4]
FEINSTEIN M J P, ERATH T G, THRAILKILL E A, et al. Investigating the substitutability of little cigars/cigarillos, e-cigarettes, and other noncombusted tobacco products for cigarettes using the experimental tobacco marketplace[J]. Exp Clin Psychopharmacol, 2025, 38(6): 128-136. DOI: 10.1037/pha0000797.
[5]
TRIGG J, MCENTEE A, KOSTADINOV V, et al. Tobacco cessation interventions in high-income countries with Chinese, Vietnamese and Arab people who smoke: a scoping review of outcomes and cultural considerations[J/OL]. BMJ Public Health, 2025, 3(2): e002956 [2025-09-01]. https://doi.org/10.1136/bmjph-2025-002956. DOI: 10.1136/bmjph-2025-002956.
[6]
CRUZ-JIMÉNEZ L, BARRIENTOS-GUTIÉRREZ I, GALLEGOS-CARRILLO K, et al. Awareness of and support for banning e-cigarettes and heated tobacco products among Mexicans who smoke[J/OL]. Rev Panam Salud Publica, 2025, 49: e91 [2025-09-01]. https://doi.org/10.26633/rpsp.2025.91. DOI: 10.26633/rpsp.2025.91.
[7]
KELEHER F, ESOPENKO C, LINDSEY H M, et al. Improvements in Resting-State Functional Connectivity of the Cerebellum after Transcranial Photobiomodulation in Adults with a History of Repetitive Head Acceleration Events[J]. Photobiomodul Photomed Laser Surg, 2025, 38(9): 55-58. DOI: 10.1177/25785478251376477.
[8]
CAI Z Y, HU K, LINLI Z Q. Sexual dimorphism of white-matter functional connectome in healthy young adults[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2025, 35(6): 111-114. DOI: 10.1016/j.pnpbp.2025.111486.
[9]
BANSAL S, PETERSON B S, GUPTE C, et al. Biophysically Constrained Dynamical Modelling of the Brain Using Multimodal Magnetic Resonance Imaging[J]. Brain Res Bull, 2025, 22(4): 154-157. DOI: 10.1016/j.brainresbull.2025.111541.
[10]
NAYAK S, WAGSHUL M E, HOLTZER R. Mild cognitive impairment impacts association of functional brain connectivity with cognition in older adults with and without multiple sclerosis[J]. Geroscience, 2025, 32(10): 158-163. DOI: 10.1007/s11357-025-01854-9.
[11]
SUI W Y, XUE T, CAO J C. Changes in spontaneous brain activity of adolescents with smoking addiction[J]. Chinese Journal of Medical Imaging Technology, 2023, 39(7): 978-981. DOI: 10.13929/j.issn.1003-3289.2023.07.005.
[12]
BAO F X, XU H, MA X X. A preliminary study on the resting-state functional connectivity of the nucleus accumbens in chronic smokers at high altitude[J]. Journal of Clinical Radiology, 2022, 41(6): 1000-1003. DOI: 10.13437/j.cnki.jcr.2022.06.002.
[13]
REN J, ZHANG Y, SONG H, et al. The interaction of oxytocin and nicotine addiction on psychosocial stress: an fMRI study[J/OL]. Transl Psychiatry, 2024, 14(1): 348 [2025-09-01]. https://doi.org/10.1038/s41398-024-03016-5. DOI: 10.1038/s41398-024-03016-5.
[14]
XUE Y, ZHOU Y, NA X, et al. ADHD diagnostics and severity assessment using topological manifold learning of resting-state functional magnetic resonance imaging (rs-fMRI)[J]. Neuroimage Rep, 2025, 5(3): 100-128. DOI: 10.1016/j.ynirp.2025.100283.
[15]
KANZAWA J, AMEMIYA S, TAKAO H, et al. Characterizing Hemodynamic Alterations in Glioma: Insights From Resting-State Functional MRI[J/OL]. J Neuroimaging, 2025, 35(5): e70082 [2025-09-01]. https://doi.org/10.1111/jon.70082. DOI: 10.1111/jon.70082.
[16]
WEN M, YANG Z, WEI Y, et al. More than just statics: Temporal dynamic changes of intrinsic brain activity in cigarette smoking[J/OL]. Addict Biol, 2021, 26(6): e13050 [2025-09-01]. https://doi.org/10.1111/adb.13050. DOI: 10.1111/adb.13050.
[17]
CHEN Y, CHAUDHARY S, WANG W, et al. Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking[J]. Addict Neurosci, 2022, 21(1): 110-118. DOI: 10.1016/j.addicn.2021.100003.
[18]
HOU C, YAN M, PEI H, et al. State-dependent alterations in neural activity induced by the personalized ventrolateral prefrontal cortex stimulation during viewing emotional film clips[J]. Brain Res Bull, 2025, 23(10): 256-258. DOI: 10.1016/j.brainresbull.2025.111534.
[19]
PETERSEN N, APOSTOL M R, JORDAN T, et al. Comparing neuromodulation targets to reduce cigarette craving and withdrawal: a randomized clinical trial[J]. Neuropsychopharmacology, 2025, 50(9): 131-136. DOI: 10.1038/s41386-025-02106-2.
[20]
HOEK J, LEE E, TEDDY L, et al. How do New Zealand youth perceive the smoke-free generation policy? A qualitative analysis[J]. Tob Control, 2024, 33(3): 346-352. DOI: 10.1136/tc-2022-057658.
[21]
HU L, DING S, YAO J, et al. Disrupted neurovascular coupling in patients with lung cancer after chemotherapy[J]. Quant Imaging Med Surg, 2025, 15(9): 7820-7832. DOI: 10.21037/qims-24-1321.
[22]
CHEN Z, CUI C, SUN X, et al. Altered neural reward activation predicts clinical depression improvement after a novel loving-kindness meditation: a multimodal neuroimaging study[J]. Psychiatry Res Neuroimaging, 2025, 353(6): 112-117. DOI: 10.1016/j.pscychresns.2025.112059.
[23]
CAI Z, WANG P, LIU B, et al. To explore the mechanism of tobacco addiction using structural and functional MRI: a preliminary study of the role of the cerebellum-striatum circuit[J]. Brain Imaging Behav, 2022, 16(2): 834-842. DOI: 10.1007/s11682-021-00546-0.
[24]
NIU X, GAO X, LV Q, et al. Increased spontaneous activity of the superior frontal gyrus with reduced functional connectivity to visual attention areas and cerebellum in male smokers[J]. Front Hum Neurosci, 2023, 17(6): 115-126. DOI: 10.3389/fnhum.2023.1153976.
[25]
LIN C, XIE Y, LIU D, et al. Fractional Amplitude of Low-Frequency Fluctuations and Regional Homogeneity Analyses Revealed Altered Local Spontaneous Neural Activities in Ankylosing Spondylitis[J]. J Pain Res, 2025, 18(3): 4551-4563. DOI: 10.2147/jpr.S515977.
[26]
ZHEZI W, YANXI X, XINGWU X, et al. Investigating the impact of type 2 diabetes mellitus on brain function in obstructive sleep apnea patients using regional homogeneity and seed-based functional connectivity methods[J]. Front Neurosci, 2025, 19(8): 158-164. DOI: 10.3389/fnins.2025.1581884.
[27]
WAHYUNENGTIYAS M, AMALIA A, WIDJIATI W, et al. The effect of black cumin (Nigella sativa L.) on the number of glial cells in white rats (Rattus norvegicus) exposed to cigarette smoke[J]. Open Vet J, 2025, 15(2): 709-713. DOI: 10.5455/OVJ.2025.v15.i2.19.
[28]
LUIJERINK L, WATERS K, RODRIGUEZ M, et al. GFAP expression in the BRAIN during human postnatal development[J]. Neuropathol Appl Neurobiol, 2024, 50(5): 130-140. DOI: 10.1111/nan.13007.
[29]
ZHANG C, PANG T, CHEN Y, et al. Interactive dynamic scalp acupuncture enhances brain functional connectivity in bilateral basal ganglia ischemic stroke patients: a randomized controlled trial[J]. Front Neurol, 2025, 16(8): 160-168. DOI: 10.3389/fneur.2025.1604342.
[30]
ZHANG Y, WANG X, WANG X, et al. The alteration of the sensorimotor network in trigeminal neuralgia after microvascular decompression surgery: a follow-up study using independent component analysis[J]. Front Physiol, 2025, 16(5): 163-168. DOI: 10.3389/fphys.2025.1633028.
[31]
MAO C, ZHANG B, GUO M, et al. Functional connectivity of the periaqueductal grey subdivisions is disrupted in chronic low back pain[J]. Brain Imaging Behav, 2025, 35(5): 168-172. DOI: 10.1007/s11682-025-01047-0.
[32]
TOBYNE S M, BRISSENDEN J A, NOYCE A L, et al. Combined Auditory, Tactile, and Visual fMRI Reveals Sensory-Biased and Supramodal Working Memory Regions in Human Frontal Cortex[J]. J Neurosci, 2025, 75(6): 352-359. DOI: 10.1523/jneurosci.0773-25.2025.
[33]
HU S, SUN H, BAO C, et al. Functional brain abnormalities in adolescents and young adults with bipolar depression with mixed features: Insights from resting-state fMRI[J]. J Psychiatr Res, 2025, 190(5): 490-498. DOI: 10.1016/j.jpsychires.2025.09.001.
[34]
ZHANG M, HUANG H, NIU X, et al. Altered inter-hemispheric and intra-hemispheric functional connectivity dynamics in male cigarette smokers[J]. BMC Psychiatry, 2025, 25(1): 758-764. DOI: 10.1186/s12888-025-07222-3.
[35]
FRANCIS A N, SEBILLE S, WHITFIELD-GABRIELI S, et al. Multimodal 7T imaging reveals enhanced functional coupling between salience and frontoparietal networks in young adult tobacco cigarette smokers[J]. Brain Imaging Behav, 2024, 18(4): 913-921. DOI: 10.1007/s11682-024-00882-x.
[36]
PATEL D M, POBLETE G F, CASTELLANOS A, et al. Functional brain connectivity of the salience network in alcohol use and anxiety disorders[J]. J Affect Disord, 2025, 62(3): 124-133. DOI: 10.1016/j.jad.2025.02.045.
[37]
ZHANG T, ZENG Q, LI K, et al. Distinct resting-state functional connectivity patterns of Anterior Insula affected by smoking in mild cognitive impairment[J]. Brain Imaging Behav, 2023, 17(4): 386-394. DOI: 10.1007/s11682-023-00766-6.
[38]
ZHANG M Z, GAO X Y, YANG Z G, et al. Analysis of effective connectivity in default mode network in male long-term smokers based on dynamic causal modeling[J]. Zhonghua Yi Xue Za Zhi, 2022, 102(35): 2769-2773. DOI: 10.3760/cma.j.cn112137-20220705-01486.
[39]
CHEN Y, DHINGRA I, CHAUDHARY S, et al. Overnight Abstinence Is Associated With Smaller Secondary Somatosensory Cortical Volumes and Higher Somatosensory-Motor Cortical Functional Connectivity in Cigarette Smokers[J]. Nicotine Tob Res, 2022, 24(12): 1889-1897. DOI: 10.1093/ntr/ntac168.
[40]
QIU T, XIE F, ZENG Q, et al. Interactions between cigarette smoking and cognitive status on functional connectivity of the cortico-striatal circuits in individuals without dementia: A resting-state functional MRI study[J]. CNS Neurosci Ther, 2022, 28(8): 1195-204. DOI: 10.1111/cns.13852.

PREV Association between gestational diabetes mellitus and brain development in very preterm infants: A quantitative 3D-ASL study
NEXT Alterations in the structures of subcortical nuclei and structural covariance network properties in classic trigeminal neuralgia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn