Share:
Share this content in WeChat
X
Clinical Article
Alterations in the structures of subcortical nuclei and structural covariance network properties in classic trigeminal neuralgia
WANG Danyang  JIANG Jingqi  YUAN Wenhuan  ZHANG Pengfei  MA Xiaojin  ZHANG Jing 

DOI:10.12015/issn.1674-8034.2026.01.003.


[Abstract] Objective To explore the variation characteristics of gray matter volume (GMV) and GMV-based structural covariance network (SCN) of subcortical nuclear structures in patients with classic trigeminal neuralgia (CTN).Materials and Methods The 3D-T1WI structural image data of 55 patients with classic CTN and 59 healthy controls were prospectively collected, and the GMV of bilateral thalamus, hippocampus and amygdala subregions was extracted, and calculate the SCN at the group level based on the GMV of each subject. Compare the differences in GMV and SCN parameters between the two groups respectively.Results CTN patients showed volume reduction in the left anteriorventral, paracentral, parafascicular, right laterodorsal, central medial, reuniens medial ventral and bilateral ventromedial in the subregions of the thalamus (P < 0.001). In the amygdala subregion, the volumes of the right accessory basal nucleus, the anterior amygdaloid area, the cortico-amygdaloid transition area, and the bilateral cortical nucleus (P < 0.001) decreased; in the hippocampal subregion, the volume of the left cornu ammonis 4-body and the granule cell layer of the dentate gyrus-body (P ≤ 0.001) decreased. Partial correlation analysis indicated that the duration of pain in the CTN patient group was negatively correlated with the volumes of the left ventromedial, the left parafascicular, the right ventromedial and the right central medial (rs = -0.397, P = 0.003; rs = -0.435, P < 0.001; rs = -0.306, P = 0.023 and rs = -0.323, P = 0.016, respectively), the score of the self-rating anxiety scale was positively correlated with the volume of the right cortico-amygdaloid transition area and the right accessory basal nucleus (rs = 0.257, P = 0.059 and rs = 0.349, P = 0.009, respectively). The small-world index of SCN in the CTN group was significantly lower than that in the control group (P < 0.05).Conclusions The important subregions of subcortical nuclear structure in CTN patients show volume reduction and changes in network properties. These findings suggest that the alterations in subcortical nuclear structure and structural covariance network characteristics, as potential structural feature markers of CTN, are expected to provide new targets for pain treatment.
[Keywords] classic trigeminal neuralgia;magnetic resonance imaging;gray matter volume;structural covariance network;thalamus;hippocampus;amygdala

WANG Danyang1, 2, 3   JIANG Jingqi1, 2, 3   YUAN Wenhuan1, 3   ZHANG Pengfei1, 2, 3, 4   MA Xiaojin1, 2, 3   ZHANG Jing1, 2, 3*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Gansu Province Clinical Research Center for Functional and Molecular Imaging,Lanzhou 730030, China

4 Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

Corresponding author: ZHANG J, E-mail: ery_zhangjing@lzu.edu.cn

Conflicts of interest   None.

Received  2025-07-21
Accepted  2025-11-28
DOI: 10.12015/issn.1674-8034.2026.01.003
DOI:10.12015/issn.1674-8034.2026.01.003.

[1]
PASHKOV A, FILIMONOVA E, MARTIROSYAN A, et al. Cognitive and Personality Profiles of Patients With Chronic Trigeminal Neuralgia[J/OL]. Eur J Pain, 2025, 29(6): e70054 [2025-07-21]. https://onlinelibrary.wiley.com/doi/10.1002/ejp.70054. DOI: 10.1002/ejp.70054.
[2]
BENDTSEN L, ZAKRZEWSKA J M, HEINSKOU T B, et al. Advances in diagnosis, classification, pathophysiology, and management of trigeminal neuralgia[J]. Lancet Neurol, 2020, 19(9): 784-796. DOI: 10.1016/s1474-4422(20)30233-7.
[3]
BORA N, PARIHAR P, RAJ N, et al. A Systematic Review of the Role of Magnetic Resonance Imaging in the Diagnosis and Detection of Neurovascular Conflict in Patients With Trigeminal Neuralgia[J/OL]. Cureus, 2023, 15(9): e44614 [2025-07-21]. https://www.sci-hub.st/10.7759/cureus.44614. DOI: 10.7759/cureus.44614.
[4]
HERBER S, ZIMMERMAN R S, CHEN A, et al. Teflon Granuloma With Active Inflammation: A Cause of Recurrent Trigeminal Neuralgia After Microvascular Decompression: Imaging and Pathological Correlation[J]. Clin Nucl Med, 2024, 49(12): 1105-1108. DOI: 10.1097/RLU.0000000000005444.
[5]
MO J, ZHANG J, HU W, et al. Whole-brain morphological alterations associated with trigeminal neuralgia[J/OL]. J Headache Pain, 2021, 22(1): 95 [2025-07-21]. https://doi.org/10.1186/s10194-021-01308-5. DOI: 10.1186/s10194-021-01308-5.
[6]
SHEN S, ZHENG H, WANG J, et al. Gray matter volume reduction with different disease duration in trigeminal neuralgia[J]. Neuroradiology, 2022, 64(2): 301-311. DOI: 10.1007/s00234-021-02783-y.
[7]
NARDONI L, TULLO M G, STEFANO G D, et al. Structural brain alterations and changes in resting-state functional connectivity in patients with trigeminal neuralgia: A meta-analysis[J/OL]. Neuroimage Clin, 2025, 46: 103759 [2025-07-21]. https://doi.org/10.1016/j.nicl.2025.103759. DOI: 10.1016/j.nicl.2025.103759.
[8]
LIANG Y, ZHAO Q, NEUBERT J K, et al. Causal interactions in brain networks predict pain levels in trigeminal neuralgia[J/OL]. Brain Res Bull, 2024, 211: 110947 [2025-07-21]. https://doi.org/10.1016/j.brainresbull.|2024.110947. DOI: 10.1016/j.brainresbull.2024.110947.
[9]
YAN J, WANG L, PAN L, et al. Altered trends of local brain function in classical trigeminal neuralgia patients after a single trigger pain[J/OL]. BMC Med Imaging, 2024, 24(1): 66 [2025-07-21]. https://doi.org/10.1186/s12880-024-01239-y. DOI: 10.1186/s12880-024-01239-y.
[10]
LIU X, GE X, TANG X, et al. Brain entropy changes in classical trigeminal neuralgia[J/OL]. Front Neurol, 2023, 14: 1273336 [2025-07-21]. https://doi.org/10.3389/fneur.2023.1273336. DOI: 10.3389/fneur.2023.1273336.
[11]
DANYLUK H, ANDREWS J, KESARWANI R, et al. The thalamus in trigeminal neuralgia: structural and metabolic abnormalities, and influence on surgical response[J/OL]. BMC Neurol, 2021, 21(1): 290 [2025-07-21]. https://doi.org/10.1186/s12883-021-02323-4. DOI: 10.1186/s12883-021-02323-4.
[12]
NOORANI A, HUNG P S, ZHANG J Y, et al. Pain Relief Reverses Hippocampal Abnormalities in Trigeminal Neuralgia[J]. J Pain, 2022, 23(1): 141-155. DOI: 10.1016/j.jpain.2021.07.004.
[13]
VACULIK M F, NOORANI A, HUNG P S, et al. Selective hippocampal subfield volume reductions in classic trigeminal neuralgia[J/OL]. Neuroimage Clin, 2019, 23: 101911 [2025-07-21]. https://doi.org/10.1016/j.nicl.2019.101911. DOI: 10.1016/j.nicl.2019.101911.
[14]
DANYLUK H, LEE E K, WONG S, et al. Hippocampal and trigeminal nerve volume predict outcome of surgical treatment for trigeminal neuralgia[J]. Cephalalgia, 2020, 40(6): 586-596. DOI: 10.1177/0333102419877659.
[15]
ZHANG Y, MAO Z, PAN L, et al. Dysregulation of Pain- and Emotion-Related Networks in Trigeminal Neuralgia[J/OL]. Front Hum Neurosci, 2018, 12: 107 [2025-07-21]. https://doi.org/10.3389/fnhum.2018.00107. DOI: 10.3389/fnhum.2018.00107.
[16]
ZHANG P, JIANG Y, LIU G, et al. Altered brain functional network dynamics in classic trigeminal neuralgia: a resting-state functional magnetic resonance imaging study[J/OL]. J Headache Pain, 2021, 22(1): 147 [2025-07-21]. https://doi.org/10.1186/s10194-021-01354-z. DOI: 10.1186/s10194-021-01354-z.
[17]
ZHANG P, WAN X, AI K, et al. Rich-club reorganization and related network disruptions are associated with the symptoms and severity in classic trigeminal neuralgia patients[J/OL]. Neuroimage Clin, 2022, 36: 103160 [2025-07-21]. https://doi.org/10.1016/j.nicl.2022.103160. DOI: 10.1016/j.nicl.2022.103160.
[18]
ZHANG P, WAN X, JIANG J, et al. A causal effect study of cortical morphology and related covariate networks in classical trigeminal neuralgia patients[J/OL]. Cereb Cortex, 2024, 34(8): bhae337 [2025-07-21]. https://doi.org/10.1093/cercor/bhae337. DOI: 10.1093/cercor/bhae337.
[19]
Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211. DOI: 10.1177/0333102417738202.
[20]
IGLESIAS J E, INSAUSTI R, LERMA-USABIAGA G, et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology[J]. NeuroImage, 2018, 183: 314-326. DOI: 10.1016/j.neuroimage.2018.08.012.
[21]
IGLESIAS J E, VAN LEEMPUT K, AUGUSTINACK J, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases[J]. NeuroImage, 2016, 141: 542-555. DOI: 10.1016/j.neuroimage.2016.07.020.
[22]
SAYGIN Z M, KLIEMANN D, IGLESIAS J E, et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas[J]. NeuroImage, 2017, 155: 370-382. DOI: 10.1016/j.neuroimage.2017.04.046.
[23]
HUMPHRIES M D, GURNEY K. Network 'small-world-ness': a quantitative method for determining canonical network equivalence[J/OL]. PloS one, 2008, 3(4): e0002051 [2025-07-21]. https://www.sci-hub.st/10.1371/journal.pone.0002051. DOI: 10.1371/journal.pone.0002051.
[24]
LI Y, WANG J, YANG T, et al. Alterations of Thalamic Nuclei Volumes and the Intrinsic Thalamic Structural Network in Patients with Multiple Sclerosis-Related Fatigue[J/OL]. Brain Sci, 2022, 12(11): 1538 [2025-07-21]. https://doi.org/10.3390/brainsci12111538. DOI: 10.3390/brainsci12111538.
[25]
PASHKOV A, FILIMONOVA E, ZAITSEV B, et al. Thalamic changes in patients with chronic facial pain[J]. Neuroradiology, 2025, 67(4): 895-908. DOI: 10.1007/s00234-024-03508-7.
[26]
YOU H J, LEI J, PERTOVAARA A. Thalamus: The 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain[J/OL]. Neurosci Biobehav Rev, 2022, 139: 104745 [2025-07-21]. https://doi.org/10.1016/j.neubiorev.2022.104745. DOI: 10.1016/j.neubiorev.2022.104745.
[27]
LEI J, YE G, PERTOVAARA A, et al. Effects of Intramuscular Heating-needle Stimulation in Controlling Adjuvant-induced Muscle Nociception in Rats: Differential Roles of Thalamic Purinergic P2X3 Receptors[J]. Neuroscience, 2020, 433: 81-93. DOI: 10.1016/j.neuroscience.2020.02.039.
[28]
LEI J, YE G, PERTOVAARA A, et al. Effects of Heating-needle Stimulation in Restoration of Weakened Descending Inhibition of Nociception in a Rat Model of Parkinson's Disease[J]. Neuroscience, 2020, 440: 249-266. DOI: 10.1016/j.neuroscience.2020.05.043.
[29]
FRANZINI A, ROSSINI Z, MOOSA S, et al. Medial thalamotomy using stereotactic radiosurgery for intractable pain: a systematic review[J]. Neurosurg Rev, 2022, 45(1): 71-80. DOI: 10.1007/s10143-021-01561-x.
[30]
YOUNG R F, JACQUES D S, RAND R W, et al. Medial thalamotomy with the Leksell Gamma Knife for treatment of chronic pain[J]. Acta Neurochir Suppl, 1994, 62: 105-110. DOI: 10.1007/978-3-7091-9371-6_22.
[31]
PIRES M P, MCBENEDICT B, AHMED I E, et al. Exploring the Thalamus as a Target for Neuropathic Pain Management: An Integrative Review[J/OL]. Cureus, 2024, 16(5): e60130 [2025-07-21]. https://www.sci-hub.st/10.7759/cureus.60130. DOI: 10.7759/cureus.60130.
[32]
KRÜGER M T, AVECILLAS-CHASIN J M, HERAN M K S, et al. Directional Deep Brain Stimulation Can Target the Thalamic "Sweet Spot" for Improving Neuropathic Dental Pain[J]. Oper Neurosurg, 2021, 21(2): 81-86. DOI: 10.1093/ons/opab136.
[33]
GALLAY M N, MAGARA A E, MOSER D, et al. Magnetic resonance-guided focused ultrasound central lateral thalamotomy against chronic and therapy-resistant neuropathic pain: retrospective long-term follow-up analysis of 63 interventions[J]. J Neurosurg, 2023, 139(3): 615-624. DOI: 10.3171/2023.1.Jns222879.
[34]
ABDALLAT M, SARYYEVA A, BLAHAK C, et al. Centromedian-Parafascicular and Somatosensory Thalamic Deep Brain Stimulation for Treatment of Chronic Neuropathic Pain: A Contemporary Series of 40 Patients[J/OL]. Biomedicines, 2021, 9(7): 731 [2025-07-21]. https://doi.org/10.3390/biomedicines9070731. DOI: 10.3390/biomedicines9070731.
[35]
RAPISARDA A, IOANNONI E, IZZO A, et al. What Are the Results and the Prognostic Factors of Motor Cortex Stimulation in Patients with Facial Pain? A Systematic Review of the Literature[J]. Eur Neurol, 2021, 84(3): 151-156. DOI: 10.1159/000514827.
[36]
LOVO E E, TORRES B, CAMPOS F, et al. Stereotactic Gamma Ray Radiosurgery to the Centromedian and Parafascicular Complex of the Thalamus for Trigeminal Neuralgia and Other Complex Pain Syndromes[J/OL]. Cureus, 2019, 11(12): e6421 [2025-07-21]. https://www.sci-hub.st/10.7759/cureus.6421. DOI: 10.7759/cureus.6421.
[37]
BECK A K, SANDMANN P, DÜRSCHMID S, et al. Neuronal activation in the human centromedian-parafascicular complex predicts cortical responses to behaviorally significant auditory events[J/OL]. NeuroImage, 2020, 211: 116583 [2025-07-21]. https://doi.org/10.1016/j.neuroimage.2020.116583. DOI: 10.1016/j.neuroimage.2020.116583.
[38]
NELSON A J D. The anterior thalamic nuclei and cognition: A role beyond space?[J]. Neurosci Biobehav Rev, 2021, 126: 1-11. DOI: 10.1016/j.neubiorev.2021.02.047.
[39]
ROY D S, ZHANG Y, AIDA T, et al. Anterior thalamic circuits crucial for working memory[J/OL]. Proc Natl Acad Sci U S A, 2022, 119(20): e2118712119 [2025-07-21]. https://www.sci-hub.st/10.1073/pnas.2118712119. DOI: 10.1073/pnas.2118712119.
[40]
WOLFF M, HALASSA M M. The mediodorsal thalamus in executive control[J]. Neuron, 2024, 112(6): 893-908. DOI: 10.1016/j.neuron.2024.01.002.
[41]
NEUGEBAUER V, MAZZITELLI M, CRAGG B, et al. Amygdala, neuropeptides, and chronic pain-related affective behaviors[J/OL]. Neuropharmacology, 2020, 170: 108052 [2025-07-21]. https://doi.org/10.1016/j.neuropharm.2020.108052. DOI: 10.1016/j.neuropharm.2020.108052.
[42]
THOMPSON J M, NEUGEBAUER V. Cortico-limbic pain mechanisms[J]. Neurosci Lett, 2019, 702: 15-23. DOI: 10.1016/j.neulet.2018.11.037.
[43]
ZHENG F, LI C, ZHANG D, et al. Study on the sub-regions volume of hippocampus and amygdala in schizophrenia[J]. Quant Imaging Med Surg, 2019, 9(6): 1025-1036. DOI: 10.21037/qims.2019.05.21.
[44]
CHANG Z, LIU L, LIN L, et al. Selective disrupted gray matter volume covariance of amygdala subregions in schizophrenia[J/OL]. Front Psychiatry, 2024, 15: 1349989 [2025-07-21]. https://doi.org/10.3389/fpsyt.2024.1349989. DOI: 10.3389/fpsyt.2024.1349989.
[45]
QU M, GAO B, JIANG Y, et al. Atrophy patterns in hippocampus and amygdala subregions of depressed patients with Parkinson's disease[J]. Brain Imaging Behav, 2024, 18(3): 475-484. DOI: 10.1007/s11682-023-00844-9.
[46]
GU S Y, SHI F C, WANG S, et al. Altered volume of the amygdala subregions in patients with chronic low back pain[J/OL]. Front Neurol, 2024, 15: 1351335 [2025-07-21]. https://doi.org/10.3389/fneur.2024.1351335. DOI: 10.3389/fneur.2024.1351335.
[47]
ALPER J, SEIFERT A C, VERMA G, et al. Leveraging high-resolution 7-tesla MRI to derive quantitative metrics for the trigeminal nerve and subnuclei of limbic structures in trigeminal neuralgia[J/OL]. J Headache Pain, 2021, 22(1): 112 [2025-07-21]. https://doi.org/10.1186/s10194-021-01325-4. DOI: 10.1186/s10194-021-01325-4.
[48]
HUANG X, LI B, LI Y, et al. A multimodal meta-analysis of gray matter alterations in trigeminal neuralgia[J/OL]. Front Neurol, 2023, 14: 1179896 [2025-07-21]. https://doi.org/10.3389/fneur.2023.1179896. DOI: 10.3389/fneur.2023.1179896.
[49]
TANG Y, WANG M, ZHENG T, et al. Grey matter volume alterations in trigeminal neuralgia: A systematic review and meta-analysis of voxel-based morphometry studies[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 98: 109821 [2025-07-21]. https://doi.org/10.1016/j.pnpbp.2019.109821. DOI: 10.1016/j.pnpbp.2019.109821.
[50]
KOSUGE S, MASAOKA Y, KASAI H, et al. The right amygdala and migraine: Analyzing volume reduction and its relationship with symptom severity[J/OL]. PloS one, 2024, 19(4): e0301543 [2025-07-21]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301543. DOI: 10.1371/journal.pone.0301543.
[51]
ALLEN H N, BOBNAR H J, KOLBER B J. Left and right hemispheric lateralization of the amygdala in pain[J/OL]. Prog Neurobiol, 2021, 196: 101891 [2025-07-21]. https://doi.org/10.1016/j.pneurobio.2020.101891. DOI: 10.1016/j.pneurobio.2020.101891.
[52]
SUGIMOTO M, TAKAHASHI Y, SUGIMURA Y K, et al. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain[J]. Pain, 2021, 162(8): 2273-2286. DOI: 10.1097/j.pain.0000000000002224.
[53]
KIM S W, LEE D, KIM J H, et al. Autonomic Readiness for Social Threats in Patients with Social Anxiety Disorder[J]. Clin Psychopharmacol Neurosci, 2025, 23(2): 202-211. DOI: 10.9758/cpn.24.1228.
[54]
KITT E R, ZACHAREK S J, ODRIOZOLA P, et al. Responding to threat: Associations between neural reactivity to and behavioral avoidance of threat in pediatric anxiety[J]. J Affect Disord, 2024, 351: 818-826. DOI: 10.1016/j.jad.2024.01.204.
[55]
HANYCZ S A, NOORANI A, HUNG P S, et al. Hippocampus diffusivity abnormalities in classical trigeminal neuralgia[J/OL]. Pain reports, 2024, 9(3): e1159 [2025-07-21]. https://www.sci-hub.st/10.1097/PR9.0000000000001159. DOI: 10.1097/pr9.0000000000001159.
[56]
WU C, JIA L, MU Q, et al. Altered hippocampal subfield volumes in major depressive disorder with and without anhedonia[J/OL]. BMC Psychiatry, 2023, 23(1): 540 [2025-07-21]. https://doi.org/10.1186/s12888-023-05001-6. DOI: 10.1186/s12888-023-05001-6.
[57]
XU Y, CUI D, ZHAO Y, et al. Volumetric Alterations of the Hippocampal Subfields in Major Depressive Disorder with and without Suicidal Ideation[J/OL]. Behav Brain Res, 2023: 114733 [2025-07-21]. https://doi.org/10.1016/j.bbr.2023.114733. DOI: 10.1016/j.bbr.2023.114733.
[58]
OBERMANN M, RODRIGUEZ-RAECKE R, NAEGEL S, et al. Gray matter volume reduction reflects chronic pain in trigeminal neuralgia[J]. NeuroImage, 2013, 74: 352-358. DOI: 10.1016/j.neuroimage.2013.02.029.

PREV Alterations of spontaneous brain activity and functional connectivity in chronic smokers: A resting state magnetic resonance imaging study
NEXT A study on the brain network connectivity of adolescent depression patients with childhood trauma treated with eye movement desensitization and reprocessing combined with sertraline based on rs-fMRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn