Share:
Share this content in WeChat
X
Clinical Article
A study on the brain network connectivity of adolescent depression patients with childhood trauma treated with eye movement desensitization and reprocessing combined with sertraline based on rs-fMRI
LEI Hongjun  PENG Juan  ZHANG Daoen  WANG Qingjian  REN Yao  ZUO Yunfeng  ZHANG Gaofeng 

DOI:10.12015/issn.1674-8034.2026.01.004.


[Abstract] Objective To investigate brain functional network changes in adolescents with depression and childhood trauma after eye movement desensitization and reprocessing (EMDR) combined with sertraline versus sertraline monotherapy, and evaluate the advantages of combined therapy.Materials and Methods A total of 67 adolescent patients with depression and childhood trauma were enrolled. General demographic data and Hamilton Depression Rating Scale (HAMD) scores were collected. Participants were divided into two groups: 33 receiving EMDR combined with sertraline and 34 receiving sertraline monotherapy. All underwent 8-week treatment. Clinical evaluations included the Hamilton Depression Rating Scale (HAMD). Pre- and post-treatment resting-state and structural imaging data were acquired. Functional connectivity matrices were constructed using average blood oxygen level-dependent (BOLD) signals from 142 regions of interest (ROI) defined by the cerebellum-removed Dosenbach atlas. Paired-sample t-tests compared intergroup differences in functional connectivity matrices. Differential edges were categorized into large-scale brain networks using the Yeo7 model, and the number of differential edges within/between seven networks was calculated.Results Both groups showed significant HAMD score reductions (combined therapy: t = 16.11, P < 0.001; monotherapy: t = 13.20, P < 0.001) and widespread brain functional connectivity changes. The combined therapy group had 49 differential ROIs and 39 differential edges (all P < 0.05), with reduced connectivity primarily within the default mode network (DMN) and ventral attention network (VAN), and increased connectivity between DMN-frontoparietal network (FPN) and DMN-dorsal attention network (DAN). The sertraline group had 32 differential ROIs and 19 differential edges (all P < 0.05), with reduced connectivity mainly within DMN and increased connectivity involving DAN.Conclusions Both treatments demonstrated effective antidepressant outcomes. Combined therapy induced enhanced DMN-FPN connectivity, suggesting improved coordination between cognitive flexibility and emotion regulation, with broader therapeutic effects compared to monotherapy.
[Keywords] adolescent depression;eye movement desensitization and reprocessing;functional magnetic resonance imaging;magnetic resonance imaging;brain functional networks;large-scale brain networks

LEI Hongjun   PENG Juan   ZHANG Daoen   WANG Qingjian   REN Yao   ZUO Yunfeng   ZHANG Gaofeng*  

Department of Imaging, the Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China

Corresponding author: ZHANG G F, E-mail: zhanggfeng159@126.com

Conflicts of interest   None.

Received  2025-07-25
Accepted  2025-12-10
DOI: 10.12015/issn.1674-8034.2026.01.004
DOI:10.12015/issn.1674-8034.2026.01.004.

[1]
GUO X, TANG G, LIN F, et al. Biological links between psychological factors and adolescent depression: childhood trauma, rumination, and resilience[J/OL]. BMC Psychiatry, 2024, 24(1): 907 [2025-07-25]. https://doi.org/10.1186/s12888-024-06369-9. DOI: 10.1186/s12888-024-06369-9.
[2]
SU Y, LI M, D'ARCY C, et al. Childhood maltreatment and major depressive disorder in well-being: a network analysis of a longitudinal community-based cohort[J]. Psychol Med, 2023, 53(15): 7180-7188. DOI: 10.1017/s0033291723000673.
[3]
YANG M, SHENG X, GE M, et al. Childhood trauma and psychological sub-health among Chinese adolescents: the mediating effect of Internet addiction[J/OL]. BMC Psychiatry, 2022, 22(1): 762 [2025-07-25]. https://doi.org/10.1186/s12888-022-04384-2. DOI: 10.1186/s12888-022-04384-2.
[4]
LIANG X, CHANG W, RAN H, et al. Childhood maltreatment and suicidal ideation in Chinese children and adolescents: the mediating role of mindfulness[J/OL]. BMC Psychiatry, 2022, 22(1): 680 [2025-07-25]. https://doi.org/10.1186/s12888-022-04336-w. DOI: 10.1186/s12888-022-04336-w.
[5]
MARTIN G, ROZANES P, PEARCE C, et al. Adolescent suicide, depression and family dysfunction[J]. Acta Psychiatr Scand, 1995, 92(5): 336-344. DOI: 10.1111/j.1600-0447.1995.tb09594.x.
[6]
ZHONG Y, HU Q, CHEN J, et al. The impact of childhood trauma on Adolescent Depressive Symptoms: the Chain Mediating role of borderline personality traits and self-control[J/OL]. BMC Psychiatry, 2024, 24(1): 377 [2025-07-25]. https://doi.org/10.1186/s12888-024-05829-6. DOI: 10.1186/s12888-024-05829-6.
[7]
CIPRIANI A, ZHOU X, DEL GIOVANE C, et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: a network meta-analysis[J]. Lancet, 2016, 388(10047): 881-890. DOI: 10.1016/s0140-6736(16)30385-3.
[8]
VITIELLO B. Combined cognitive-behavioural therapy and pharmacotherapy for adolescent depression: Does it improve outcomes compared with monotherapy?[J]. CNS Drugs, 2009, 23(4): 271-280. DOI: 10.2165/00023210-200923040-00001.
[9]
WRIGHT S L, KARYOTAKI E, CUIJPERS P, et al. EMDR v. other psychological therapies for PTSD: a systematic review and individual participant data meta-analysis[J]. Psychol Med, 2024, 54(8): 1580-1588. DOI: 10.1017/s0033291723003446.
[10]
VALIENTE-GÓMEZ A, MORENO-ALCÁZAR A, TREEN D, et al. EMDR beyond PTSD: A Systematic Literature Review[J/OL]. Front Psychol, 2017, 8: 1668 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5623122/. DOI: 10.3389/fpsyg.2017.01668.
[11]
YUAN M, RUBIN-FALCONE H, LIN X, et al. Smaller left hippocampal subfield CA1 volume is associated with reported childhood physical and/or sexual abuse in major depression: A pilot study[J]. J Affect Disord, 2020, 272: 348-354. DOI: 10.1016/j.jad.2020.03.169.
[12]
MALEJKO K, ABLER B, PLENER P L, et al. Neural Correlates of Psychotherapeutic Treatment of Post-traumatic Stress Disorder: A Systematic Literature Review[J/OL]. Front Psychiatry, 2017, 8: 85 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5437215/. DOI: 10.3389/fpsyt.2017.00085.
[13]
LI L, SU Y A, WU Y K, et al. Eight-week antidepressant treatment reduces functional connectivity in first-episode drug-naïve patients with major depressive disorder[J]. Hum Brain Mapp, 2021, 42(8): 2593-605. DOI: 10.1002/hbm.25391.
[14]
DENG X, CUI J, ZHAO J, et al. The research progress on effective connectivity in adolescent depression based on resting-state fMRI[J/OL]. Front Neurol, 2025, 16: 1498049 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11847690/. DOI: 10.3389/fneur.2025.1498049.
[15]
WILLINGER D, HÄBERLING I, ILIOSKA I, et al. Weakened effective connectivity between salience network and default mode network during resting state in adolescent depression[J/OL]. Front Psychiatry, 2024, 15: 1386984 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11024787/. DOI: 10.3389/fpsyt.2024.1386984.
[16]
TSE N Y, RATHEESH A, GANESAN S, et al. Functional dysconnectivity in youth depression: Systematic review, meta-analysis, and network-based integration[J/OL]. Neurosci Biobehav Rev, 2023, 153: 105394 [2025-07-25]. https://www.sciencedirect.com/science/article/pii/S0149763423003639?via%3Dihub. DOI: 10.1016/j.neubiorev.2023.105394.
[17]
MACÊDO M A, SATO J R, BRESSAN R A, et al. Adolescent depression and resting-state fMRI brain networks: a scoping review of longitudinal studies[J]. Braz J Psychiatry, 2022, 44(4): 420-433. DOI: 10.47626/1516-4446-2021-2032.
[18]
DOSENBACH N U, NARDOS B, COHEN A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010, 329(5997): 1358-1361. DOI: 10.1126/science.1194144.
[19]
YEO B T, KRIENEN F M, SEPULCRE J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(3): 1125-1165. DOI: 10.1152/jn.00338.2011.
[20]
LIU Z Q, LUPPI A I, HANSEN J Y, et al. Benchmarking methods for mapping functional connectivity in the brain[J]. Nat Methods, 2025, 22(7): 1593-602. DOI: 10.1038/s41592-025-02704-4.
[21]
DU Y, FU Z, SUI J, et al. NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders[J/OL]. Neuroimage Clin, 2020, 28: 102375 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7509081/. DOI: 10.1016/j.nicl.2020.102375.
[22]
ZHAO Y, MATTESON D S, MOSTOFSKY S H, et al. Group linear non-Gaussian component analysis with applications to neuroimaging[J/OL]. Comput Stat Data Anal, 2022, 171 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9390952/. DOI: 10.1016/j.csda.2022.107454.
[23]
HERMOSILLO R J M, MOORE L A, FECZKO E, et al. A precision functional atlas of personalized network topography and probabilities[J]. Nat Neurosci, 2024, 27(5): 1000-1013. DOI: 10.1038/s41593-024-01596-5.
[24]
GAO W, BISWAL B, YANG J, et al. Temporal dynamic patterns of the ventromedial prefrontal cortex underlie the association between rumination and depression[J]. Cereb Cortex, 2023, 33(4): 969-82. DOI: 10.1093/cercor/bhac115.
[25]
AVERILL C L, AVERILL L A, AKIKI T J, et al. Findings of PTSD-specific deficits in default mode network strength following a mild experimental stressor[J/OL]. NPP Digit Psychiatry Neurosci, 2024, 2(1): 9 [2025-07-25]. https://doi.org/10.1038/s44277-024-00011-y. DOI: 10.1038/s44277-024-00011-y.
[26]
LANGENECKER S A, WESTLUND SCHREINER M, BESSETTE K L, et al. Rumination-Focused Cognitive Behavioral Therapy Reduces Rumination and Targeted Cross-network Connectivity in Youth With a History of Depression: Replication in a Preregistered Randomized Clinical Trial[J]. Biol Psychiatry Glob Open Sci, 2024, 4(1): 1-10. DOI: 10.1016/j.bpsgos.2023.08.012.
[27]
MENNEN A C, NORMAN K A, TURK-BROWNE N B. Attentional bias in depression: understanding mechanisms to improve training and treatment[J]. Curr Opin Psychol, 2019, 29: 266-273. DOI: 10.1016/j.copsyc.2019.07.036.
[28]
MAO Y, XIAO H, DING C, et al. The role of attention in the relationship between early life stress and depression[J/OL]. Sci Rep, 2020, 10(1): 6154 [2025-07-25]. https://doi.org/10.1038/s41598-020-63351-7. DOI: 10.1038/s41598-020-63351-7.
[29]
SIDDIQI S H, KANDALA S, HACKER C D, et al. Individualized precision targeting of dorsal attention and default mode networks with rTMS in traumatic brain injury-associated depression[J/OL]. Sci Rep, 2023, 13(1): 4052 [2025-07-25]. https://doi.org/10.1038/s41598-022-21905-x. DOI: 10.1038/s41598-022-21905-x.
[30]
KELLER A S, LEIKAUF J E, HOLT-GOSSELIN B, et al. Paying attention to attention in depression[J/OL]. Transl Psychiatry, 2019, 9(1): 279 [2025-07-25]. https://doi.org/10.1038/s41398-019-0616-1. DOI: 10.1038/s41398-019-0616-1.
[31]
SCHACHTNER J N, DAHILL-FUCHEL J F, ALLEN K E, et al. Transcranial focused ultrasound targeting the default mode network for the treatment of depression[J/OL]. Front Psychiatry, 2025, 16: 1451828 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC12006932/. DOI: 10.3389/fpsyt.2025.1451828.
[32]
DONG H M, ZHANG X H, LABACHE L, et al. Ventral attention network connectivity is linked to cortical maturation and cognitive ability in childhood[J]. Nat Neurosci, 2024, 27(10): 2009-2020. DOI: 10.1038/s41593-024-01736-x.
[33]
FARRANT K, UDDIN L Q. Asymmetric development of dorsal and ventral attention networks in the human brain[J]. Dev Cogn Neurosci, 2015, 12: 165-174. DOI: 10.1016/j.dcn.2015.02.001.
[34]
FAIRCLOUGH S H, STAMP K, DOBBINS C. Functional connectivity across dorsal and ventral attention networks in response to task difficulty and experimental pain[J/OL]. Neurosci Lett, 2023, 793: 136967 [2025-07-25]. https://www.sciencedirect.com/science/article/pii/S0304394022005286?via%3Dihub. DOI: 10.1016/j.neulet.2022.136967.
[35]
KORGAONKAR M S, GOLDSTEIN-PIEKARSKI A N, FORNITO A, et al. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder[J]. Mol Psychiatry, 2020, 25(7): 1537-1549. DOI: 10.1038/s41380-019-0574-2.
[36]
LIU Y, LIAN W, ZHAO X, et al. Spatial Connectivity and Temporal Dynamic Functional Network Connectivity of Musical Emotions Evoked by Dynamically Changing Tempo[J/OL]. Front Neurosci, 2021, 15: 700154 [2025-07-25]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8375772/. DOI: 10.3389/fnins.2021.700154.
[37]
ELLWOOD-LOWE M E, WHITFIELD-GABRIELI S, BUNGE S A. Brain network coupling associated with cognitive performance varies as a function of a child's environment in the ABCD study[J/OL]. Nat Commun, 2021, 12(1): 7183 [2025-07-25]. https://doi.org/10.1038/s41467-021-27336-y. DOI: 10.1038/s41467-021-27336-y.

PREV Alterations in the structures of subcortical nuclei and structural covariance network properties in classic trigeminal neuralgia
NEXT Value of interpretable machine learning models based on sMRI in predicting aggressive and violent behaviors in schizophrenia patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn