Share:
Share this content in WeChat
X
Clinical Article
Correlation between arterial recanalization and the susceptibility vessel sign following endovascular therapy in patients with acute ischemic stroke
GENG Yue  ZHANG Mi  WANG Lujiahui  CHEN Juping  LI Junchen  QIAN Xin  CHEN Yu'ang  TAN Yanhuan 

DOI:10.12015/issn.1674-8034.2026.01.006.


[Abstract] Objective To investigate the relationship between arterial recanalization after endovascular treatment and the length and width of the susceptibility vessel sign (SVS), and to evaluate the relationship between successful arterial recanalization after endovascular treatment and various risk factors.Materials and Methods We retrospectively analyzed the patients with anterior circulation ischemic stroke who underwent magnetic resonance imaging (MRI) of the head and susceptibility-weighted imaging (SWI) before endovascular treatment, and measured the SVS length and width. To reduce the variation of SVS width caused by different parts and individual differences, divide the width of the SVS on the affected side by the width of the healthy blood vessel to obtain the relative width of the SVS. At the end of endovascular treatment, those who achieved an assessment of 2b50-3 in the expanded thrombolysis in cerebral infarction (eTICI) were classified as the successful recanalization group, while those who did not reach this level were classified as the unsuccessful recanalization group. Stepwise regression was used to screen variables, and the indicators with statistically significant differences were included in the multivariate logistic regression analysis to determine the independent predictors of successful recanalization and first-pass reperfusion (FPR) after endovascular treatment.Results Among 112 patients, 79 cases achieved successful recanalization and 33 cases did not,within the successful recanalization group, there were 39 cases of FPR. The median width of SVS in the successful recanalization group and the unsuccessful recanalization group was 4.3 (4.1, 4.6) mm and 3.2 (3.0, 3.9) mm, respectively, with P < 0.001, indicating a statistically significant difference; the median length of SVS was 10.6 (9.5, 13.1) mm and 10.5 (7.5, 14.5) mm, respectively, with P = 0.871, indicating no statistically significant difference. In the multivariate logistic regression analysis, SVS width was associated with successful recanalization [odds ratio = 3.025; 95% confidence interval (CI): 4.895 to 24.564; P = 0.001] and FPR (odds ratio = 9.243; 95% CI: 3.493 to 14.460; P < 0.001). The optimal cutoff value for the SVS width to predict successful recanalization and FPR were 3.95mm and 3.85 mm, respectively.Conclusions The width of SVS is a potential imaging biomarker for predicting successful reperfusion of arteries and FPR after endovascular treatment. The length of SVS has no significant predictive value.
[Keywords] acute ischemic stroke;endovascular treatment;magnetic resonance imaging;susceptibility-weighted imaging;susceptibility vessel sign

GENG Yue1   ZHANG Mi1   WANG Lujiahui1   CHEN Juping2   LI Junchen1   QIAN Xin1   CHEN Yu'ang1   TAN Yanhuan1*  

1 Department of Radiology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China

2 Department of Neurology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, China

Corresponding author: TAN Y H, E-mail: tanyanhuan@njucm.edu.cn

Conflicts of interest   None.

Received  2025-09-09
Accepted  2025-12-23
DOI: 10.12015/issn.1674-8034.2026.01.006
DOI:10.12015/issn.1674-8034.2026.01.006.

[1]
LIU R, HUANG X J, LI W. et al. Chinese expert consensus on endovascular treatment for acute large vessel occlusion with intracranial atherosclerosis[J]. Chin J Cerebrovasc Dis, 2025, 22(1): 63-73. DOI: 10.3969/j.issn.1672-5921.2025.01.010.
[2]
DENG G, QIN C, TIAN D S. Pathophysiological mechanisms of futile recanalization following endovascular therapy for acute ischemic stroke due to large vessel occlusion and potential targeted therapeutic strategy [J]. Chin J Neurol, 2022, 55(12): 1423-30. DOI: 10.3760/cma.j.cn113694-20220327-00247.
[3]
NGUYEN T N, ABDALKADER M, FISCHER U, et al. Endovascular management of acute stroke[J]. Lancet, 2024, 404(10459): 1265-1278. DOI: 10.1016/S0140-6736(24)01410-7.
[4]
LI J Y, ZHAN Z Y, ZHANG Z Z, et al. Susceptibility vessel sign in patients with subacute ischemic stroke[J]. Quant Imaging Med Surg, 2024, 14(6): 3914-3922. DOI: 10.21037/qims-23-1797.
[5]
CHEN J, ZHANG Z, NIE X M, et al. Predictive value of thrombus susceptibility for cardioembolic stroke by quantitative susceptibility mapping[J]. Quant Imaging Med Surg, 2022, 12(1): 550-557. DOI: 10.21037/qims-21-235.
[6]
GENG Y, CHEN Y A, ZHANG M, et al. The recent research development of susceptibility vessel sign in acute ischemic stroke[J]. Chin J Magn Reson Imag, 2025, 16(5): 198-203. DOI: 10.12015/issn.1674-8034.2025.05.030.
[7]
SATO T, SAKAI K, OKUMURA M, et al. Low dihomo-γ-linolenic acid is associated with susceptibility vessel sign in cardioembolism[J/OL]. Thromb Res, 2022, 213: 84-90 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/35313234/. DOI: 10.1016/j.thromres.2022.03.009.
[8]
DILLMANN M, BONNET L, VUILLIER F, et al. Factors that influence susceptibility vessel sign in patients with acute stroke referred for mechanical thrombectomy[J/OL]. Front Neurol, 2022, 13: 893060 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/35645960/. DOI: 10.3389/fneur.2022.893060.
[9]
KANAMOTO T, TATEISHI Y, YAMASHITA K, et al. Impact of width of susceptibility vessel sign on recanalization following endovascular therapy[J/OL]. J Neurol Sci, 2023, 446: 120583 [2025-09-08]. https://jns-journal.com/retrieve/pii/S0022510X23000436. DOI: 10.1016/j.jns.2023.120583.
[10]
LIN L T, LIU F F, YI T Y, et al. Tirofiban on first-pass recanalization in acute stroke endovascular thrombectomy: the OPTIMISTIC randomized clinical trial[J/OL]. JAMA Netw Open, 2025, 8(4): e255308 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40244586/. DOI: 10.1001/jamanetworkopen.2025.5308.
[11]
HEITKAMP A, HIERHOLZER S M, HEITKAMP C, et al. Key to better outcomes in stroke intervention: early versus complete reperfusion in first pass recanalization[J/OL]. J Neurol, 2025, 272(8): 504 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40646337/. DOI: 10.1007/s00415-025-13235-5.
[12]
STAESSENS S, VANDELANOTTE S, FRANÇOIS O, et al. Association between thrombus composition and etiology in patients with acute ischemic stroke treated by thrombectomy[J]. Stroke, 2025, 56(4): 1026-1035. DOI: 10.1161/STROKEAHA.124.047092.
[13]
BANI-SADR A, MECHTOUFF L, HERMIER M, et al. Cerebral collaterals are associated with pre-treatment brain-blood barrier permeability in acute ischemic stroke patients[J]. Eur Radiol, 2024, 34(12): 8005-8012. DOI: 10.1007/s00330-024-10830-4.
[14]
MIAO Z R, LUO G, SONG L G, et al. Intra-arterial tenecteplase for acute stroke after successful endovascular therapy: the ANGEL-TNK randomized clinical trial[J]. JAMA, 2025, 334(7): 582-591. DOI: 10.1001/jama.2025.10800.
[15]
GOTTLIEB M, CARLSON J N, WESTRICK J, et al. Endovascular thrombectomy with versus without intravenous thrombolysis for acute ischaemic stroke[J/OL]. Cochrane Database Syst Rev, 2025, 4(4): CD015721 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40271574/. DOI: 10.1002/14651858.CD015721.pub2.
[16]
VANDELANOTTE S, STAESSENS S, FRANÇOIS O, et al. Association between thrombus composition and first-pass recanalization after thrombectomy in acute ischemic stroke[J]. J Thromb Haemost, 2024, 22(9): 2555-2561. DOI: 10.1016/j.jtha.2024.05.034.
[17]
ABDELRADY M, DERRAZ I, LEFEVRE P H, et al. Negative susceptibility vessel sign might be predictive of complete reperfusion in patients with acute basilar artery occlusion managed with thrombectomy[J]. Eur Radiol, 2023, 33(4): 2593-2604. DOI: 10.1007/s00330-022-09215-2.
[18]
SCHMIDT R F, SWEID A, MOUCHTOURIS N, et al. Predictors of first-pass reperfusion for mechanical thrombectomy in acute ischemic stroke[J/OL]. Clin Neurol Neurosurg, 2022, 219: 107314 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/35662056/. DOI: 10.1016/j.clineuro.2022.107314.
[19]
BEYELER M, ROHNER R, IJÄS P, et al. Susceptibility vessel sign and intravenous alteplase in stroke patients treated with thrombectomy: a secondary analysis of the SWIFT DIRECT trial[J]. Clin Neuroradiol, 2025, 35(3): 483-493. DOI: 10.1007/s00062-025-01501-y.
[20]
JIANG H, LI Z Q, GAO H Y, et al. Influencing factors of positive susceptibility vessel sign in patients with acute anterior circulation occlusive stroke[J]. Chin J Magn Reson Imag, 2023, 14(10): 42-45, 52. DOI: 10.12015/issn.1674-8034.2023.10.008.
[21]
BOURCIER R, MARNAT G, DARGAZANLI C, et al. Safety and efficacy of stent retrievers plus contact aspiration in patients with acute ischaemic anterior circulation stroke and positive susceptibility vessel sign in France (VECTOR): a randomised, single-blind trial[J]. Lancet Neurol, 2024, 23(7): 700-711. DOI: 10.1016/S1474-4422(24)00165-0.
[22]
ZHANG L, GAO J L, LIAO Y, et al. Comparison of outcomes between stent retriever combined with contact aspiration and contact aspiration alone in patients without hyperdense artery sign/susceptibility vessel sign[J/OL]. J Vasc Interv Radiol, 2024, 35(8): 1194-1202.e2 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/38723863/. DOI: 10.1016/j.jvir.2024.04.025.
[23]
ABDALKADER M, NGUYEN T N. Susceptibility vessel sign and endovascular stroke therapy[J]. Lancet Neurol, 2024, 23(7): 653-654. DOI: 10.1016/S1474-4422(24)00221-7.
[24]
DEN HARTOG S J, ROOZENBEEK B, BOODT N, et al. Effect of first pass reperfusion on outcome in patients with posterior circulation ischemic stroke[J]. J Neurointerv Surg, 2022, 14(4): 333-340. DOI: 10.1136/neurintsurg-2021-017507.
[25]
CAO J, YANG Z J, ZHU Y D, et al. Benefits of first-pass reperfusion: secondary analysis based on three randomized multicenter trials in China[J]. Int J Surg, 2025, 111(12): 9102-9109. DOI: 10.1097/JS9.0000000000003128.
[26]
PHUYAL S, PAUDEL S, CHHETRI S T, et al. Susceptibility weighted imaging for detection of thrombus in acute ischemic stroke: a cross-sectional study[J/OL]. Health Sci Rep, 2024, 7(8): e2285 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/39100712/. DOI: 10.1002/hsr2.2285.
[27]
RATHBURN C M, MUN K T, SHARMA L K, et al. TOAST stroke subtype classification in clinical practice: implications for the Get With The Guidelines-Stroke nationwide registry[J/OL]. Front Neurol, 2024, 15: 1375547 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/38585349/. DOI: 10.3389/fneur.2024.1375547.
[28]
COSTAMAGNA G, BONATO S, CORTI S, et al. Advancing stroke research on cerebral thrombi with omic technologies[J/OL]. Int J Mol Sci, 2023, 24(4): 3419 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/36834829/. DOI: 10.3390/ijms24043419.
[29]
BRINJIKJI W, DUFFY S, BURROWS A, et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: a systematic review[J]. J Neurointerv Surg, 2017, 9(6): 529-534. DOI: 10.1136/neurintsurg-2016-012391.
[30]
KANG D W, JEONG H G, KIM D Y, et al. Prediction of stroke subtype and recanalization using susceptibility vessel sign on susceptibility-weighted magnetic resonance imaging[J]. Stroke, 2017, 48(6): 1554-1559. DOI: 10.1161/STROKEAHA.116.016217.
[31]
CHALELA J A, HAYMORE J B, EZZEDDINE M A, et al. The hypointense MCA sign[J/OL]. Neurology, 2002, 58(10): 1470 [2025-09-08]. https://www.neurology.org/doi/10.1212/WNL.58.10.1470. DOI: 10.1212/wnl.58.10.1470.
[32]
LI Z Q, JIANG H, YAN R F, et al. Prediction of parenchymal hematoma after mechanical thrombectomy by asymmetrical prominent veins: a retrospective cohort study based on susceptibility-weighted imaging[J]. Quant Imaging Med Surg, 2025, 15(8): 7224-7234. DOI: 10.21037/qims-2025-262.
[33]
SIMA D M, PHAN T V, FRANCESCHI A M, et al. Monitoring of amyloid related imaging abnormalities: SWI vs T2*-GRE[J/OL]. J Prev Alzheimers Dis, 2025, 12(7): 100220 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/40537339/. DOI: 10.1016/j.tjpad.2025.100220.
[34]
MARTÍNEZ CAMBLOR L, PEÑA SUÁREZ J M, MARTÍNEZ-CACHERO GARCÍA M, et al. Cerebral microbleeds. utility of SWI sequences[J]. Radiol Engl Ed, 2023, 65(4): 362-375. DOI: 10.1016/j.rxeng.2022.12.006.
[35]
BEN HASSEN W, MALLEY C, BOULOUIS G, et al. Inter- and intraobserver reliability for angiographic leptomeningeal collateral flow assessment by the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology (ASITN/SIR) scale[J]. J Neurointerv Surg, 2019, 11(4): 338-341. DOI: 10.1136/neurintsurg-2018-014185.
[36]
FORESTIER G, AGBONON R, BRICOUT N, et al. Small vessel disease and collaterals in ischemic stroke patients treated with thrombectomy[J]. J Neurol, 2022, 269(9): 4708-4716. DOI: 10.1007/s00415-022-11099-7.
[37]
CONSOLI A, PIZZUTO S, SGRECCIA A, et al. Angiographic collateral venous phase: a novel landmark for leptomeningeal collaterals evaluation in acute ischemic stroke[J/OL]. J Neurointerv Surg, 2023, 15(e2): e323-e329 [2025-09-08]. https://pubmed.ncbi.nlm.nih.gov/36539270/. DOI: 10.1136/jnis-2022-019653.

PREV Value of interpretable machine learning models based on sMRI in predicting aggressive and violent behaviors in schizophrenia patients
NEXT Value of DCE-MRI-based tumor heterogeneity quantification and deep learning in predicting neoadjuvant chemotherapy response in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn