Share:
Share this content in WeChat
X
Clinical Article
Prediction of lymph node metastasis in cervical cancer using virtual magnetic resonance elastography
ZHANG Yuejie  YANG Zihan  DONG Linxiao  LIU Jinjin  CHEN Jiejie  JIANG Wenliang  FAN Rongke  WU Qingxia  WU Qingxia  WANG Meiyun 

DOI:10.12015/issn.1674-8034.2026.01.011.


[Abstract] Objective To evaluate the predictive efficacy of virtual magnetic resonance elastography (vMRE) based on diffusion-weighted imaging (DWI) for lymph node metastasis (LNM) in cervical cancer patients undergoing direct surgery.Materials and Methods Clinical and imaging data of cervical cancer patients who underwent preoperative pelvic MRI and radical hysterectomy at Henan Provincial People's Hospital between November 2021 and November 2022 were retrospectively collected and analyzed. The pelvic MRI protocol included multi-b-value DWI, and vMRE images were generated from DWI data to extract the (μDiff) parameter. Based on postoperative pathology, patients were divided into LNM-positive and LNM-negative groups. The t-test or Mann-Whitney U test was used to compare differences in DWI-based virtual shear modulus μDiff parameters between groups, and logistic regression analysis was performed to identify variables associated with lymph node status. Predictive models were constructed, and receiver operating characteristic (ROC) curves were plotted. The area under the curve (AUC) was used to evaluate the predictive performance of each model.Results Among clinical variables, squamous cell carcinoma antigen (SCCAG) and maximum lymph node short-axis diameter were significantly associated with LNM. The mean, maximum, and median μDiff values in the LNM-positive group were significantly higher than those in the negative group (P < 0.05). The combined model incorporating the maximum μDiff value and maximum lymph node short-axis diameter demonstrated the best predictive performance for LNM, with an AUC of 0.824 (95% CI: 0.683 to 0.965), superior to the single model constructed solely based on the mean μDiff value and the short-axis diameter of the largest lymph node.Conclusions vMRE image features based on multi-b-value DWI can serve as a noninvasive indicator reflecting tissue stiffness, improving the predictive accuracy of LNM in cervical cancer patients. This approach provides a novel imaging biomarker for the preoperative noninvasive assessment of LNM.
[Keywords] cervical cancer;lymph node metastasis;magnetic resonance imaging;virtual magnetic resonance elastography;diffusion-weighted imaging

ZHANG Yuejie1   YANG Zihan2   DONG Linxiao1   LIU Jinjin2   CHEN Jiejie2   JIANG Wenliang1   FAN Rongke1   WU Qingxia3   WU Qingxia1, 2*   WANG Meiyun1, 2, 4  

1 Department of Medical Imaging, People's Hospital of Henan University (Henan Provincial People's Hospital), Zhengzhou 450003, China

2 Department of Medical Imaging, People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, China

3 United Imaging Intelligence Medical Technology (Beijing) Co., Ltd., Beijing 100089, China

4 Henan Academy of Science, Zhengzhou 450008, China

Corresponding author: WU Q X, E-mail: qxwu@zzu.edu.cn

Conflicts of interest   None.

Received  2025-08-26
Accepted  2025-12-29
DOI: 10.12015/issn.1674-8034.2026.01.011
DOI:10.12015/issn.1674-8034.2026.01.011.

[1]
VU M, YU J, AWOLUDE O A, et al. Cervical cancer worldwide[J]. Curr Probl Cancer, 2018, 42(5): 457-465. DOI: 10.1016/j.currproblcancer.2018.06.003.
[2]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[3]
GU J J, ZHENG W, LI F, et al. Redefining stage IVB cervical cancer: the unique prognosis of distant lymph node metastasis which is comparable to stage IIIC[J]. Gynecol Oncol, 2025, 198: 17-24. DOI: 10.1016/j.ygyno.2025.05.007.
[4]
BRISSON M, KIM J J, CANFELL K, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries[J]. Lancet, 2020, 395(10224): 575-590. DOI: 10.1016/S0140-6736(20)30068-4.
[5]
MONK B J, TAN D S P, CHAGÜI J D H, et al. Proportions and incidence of locally advanced cervical cancer: a global systematic literature review[J]. Int J Gynecol Cancer, 2022, 32(12): 1531-1539. DOI: 10.1136/ijgc-2022-003801.
[6]
BALCACER P, SHERGILL A, LITKOUHI B. MRI of cervical cancer with a surgical perspective: staging, prognostic implications and pitfalls[J]. Abdom Radiol (NY), 2019, 44(7): 2557-2571. DOI: 10.1007/s00261-019-01984-7.
[7]
BHATLA N, BEREK J S, FREDES M C, et al. Revised FIGO staging for carcinoma of the cervix uteri[J]. Int J Gynaecol Obstet, 2019, 145(1): 129-135. DOI: 10.1002/ijgo.12749.
[8]
TAKEUCHI M, MATSUZAKI K, BANDO Y, et al. Reduced field-of-view diffusion-weighted MR imaging for assessing the local extent of uterine cervical cancer[J]. Acta Radiol, 2020, 61(2): 267-275. DOI: 10.1177/0284185119852733.
[9]
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[10]
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[11]
HUANG Q H, WANG Y C, MENG X Y, et al. Amide proton transfer-weighted imaging combined with ZOOMit diffusion kurtosis imaging in predicting lymph node metastasis of cervical cancer[J/OL]. Bioengineering (Basel), 2023, 10(3): 331 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/36978722/. DOI: 10.3390/bioengineering10030331.
[12]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[13]
SONG J, LU Y, WANG X, et al. A comparative study of four diffusion-weighted imaging models in the diagnosis of cervical cancer[J]. Acta Radiol, 2022, 63(4): 536-544. DOI: 10.1177/02841851211002017.
[14]
YANG S L, CHEN L, HE Y, et al. Effect of neoadjuvant chemotherapy followed by surgery for FIGO stage I-II cervical cancer: a meta-analysis[J]. J Int Med Res, 2020, 48(8): 300060520945507. DOI: 10.1177/0300060520945507.
[15]
LAW B K H, KING A D, AI Q Y, et al. Head and neck tumors: amide proton transfer MRI[J]. Radiology, 2018, 288(3): 782-790. DOI: 10.1148/radiol.2018171528.
[16]
YIN H J, WANG D D, YAN R F, et al. Comparison of diffusion kurtosis imaging and amide proton transfer imaging in the diagnosis and risk assessment of prostate cancer[J/OL]. Front Oncol, 2021, 11: 640906 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/33937041/. DOI: 10.3389/fonc.2021.640906.
[17]
ALYAMI A S. Current update on DWI-MRI and its radiomics in liver fibrosis-a review of the literature[J/OL]. Tomography, 2025, 11(6): 63 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/40560009/. DOI: 10.3390/tomography11060063.
[18]
XIAO L Y, ZHAO H C, LIU S L, et al. Staging liver fibrosis: comparison of radiomics model and fusion model based on multiparametric MRI in patients with chronic liver disease[J]. Abdom Radiol (NY), 2024, 49(4): 1165-1174. DOI: 10.1007/s00261-023-04142-2.
[19]
DENG X J, LIU M L, ZHOU Q, et al. Predicting treatment response to concurrent chemoradiotherapy in squamous cell carcinoma of the cervix using amide proton transfer imaging and intravoxel incoherent motion imaging[J]. Diagn Interv Imaging, 2022, 103(12): 618-624. DOI: 10.1016/j.diii.2022.09.001.
[20]
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2022, 11: 783544 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/35047400/. DOI: 10.3389/fonc.2021.783544.
[21]
YANG C S, HASSAN H ABU, OMAR N F, et al. The value of amide proton transfer imaging in predicting parametrial invasion and lymph-vascular space invasion of cervical cancer[J/OL]. Magn Reson Imag, 2025, 116: 110282 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/39603395/. DOI: 10.1016/j.mri.2024.110282.
[22]
RIEGLER J, LABYED Y, ROSENZWEIG S, et al. Tumor elastography and its association with collagen and the tumor microenvironment[J]. Clin Cancer Res, 2018, 24(18): 4455-4467. DOI: 10.1158/1078-0432.CCR-17-3262.
[23]
BÖCKELMANN L C, SCHUMACHER U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors [J]. Expert Opin Ther Targets, 2019, 23(12): 1005-1014. DOI: 10.1080/14728222.2019.1702974.
[24]
YÜCEL E, YıLDıRıM H E K, DURAN F Ş, et al. The role of cervical elastography in the differential diagnosis of preinvasive and invasive lesions of the cervix[J]. Arch Gynecol Obstet, 2024, 309(4): 1585-1595. DOI: 10.1007/s00404-023-07345-6.
[25]
KUCZEK D E, LARSEN A M H, THORSETH M L, et al. Collagen density regulates the activity of tumor-infiltrating T cells[J/OL]. J Immunother Cancer, 2019, 7(1): 68 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/30867051/. DOI: 10.1186/s40425-019-0556-6.
[26]
MILOSEVIC M F, PINTILIE M, HEDLEY D W, et al. High tumor interstitial fluid pressure identifies cervical cancer patients with improved survival from radiotherapy plus cisplatin versus radiotherapy alone[J]. Int J Cancer, 2014, 135(7): 1692-1699. DOI: 10.1002/ijc.28403.
[27]
BARONZIO G, PARMAR G, BARONZIO M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid[J/OL]. Front Oncol, 2015, 5: 165 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/26258072/. DOI: 10.3389/fonc.2015.00165.
[28]
MA Y J, ZHAO X B, CHEN X X. Contrast-enhanced ultrasound combined with elastic imaging for predicting the efficacy of concurrent chemoradiotherapy in cervical cancer: a feasibility study[J/OL]. Front Oncol, 2024, 14: 1301900 [2025-08-25]. https://pubmed.ncbi.nlm.nih.gov/38634056/. DOI: 10.3389/fonc.2024.1301900.
[29]
ZHANG Y Y, YAN Y Y, YANG Y J. Study on value of ultrasonic elastography in diagnosis of clinical staging of cervical cancer and efficacy evaluation of radiotherapy[J]. Oncol Lett, 2019, 17(6): 4901-4906. DOI: 10.3892/ol.2019.10190.
[30]
FUGLSANG K, HALDORSEN I S, AVALL-LUNDQVIST E, et al. Cervical cancer staging, pretreatment planning, and surgical treatment in the Nordic countries-Survey from the Surgical Subcommittee of the Nordic Society of Gynecological Oncology[J]. Acta Obstet Gynecol Scand, 2018, 97(10): 1178-1184. DOI: 10.1111/aogs.13388.
[31]
JUNG H N, RYOO I, SUH S, et al. Evaluating the elasticity of metastatic cervical lymph nodes in head and neck squamous cell carcinoma patients using DWI-based virtual MR elastography[J]. Magn Reson Med Sci, 2024, 23(1): 49-55. DOI: 10.2463/mrms.mp.2022-0082.
[32]
HU B, DENG Y, CHEN J B, et al. Evaluation of MR elastography for prediction of lymph node metastasis in prostate cancer[J]. Abdom Radiol (NY), 2021, 46(7): 3387-3400. DOI: 10.1007/s00261-021-02982-4.
[33]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.

PREV Interpretable machine learning model based on DCE-MRI habitat imaging radiomics for predicting lymph node metastasis in rectal cancer
NEXT Conventional clinicopathological features combined with MRI-based radiomics model for predicting programmed death-ligand 1 expression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn