Share:
Share this content in WeChat
X
Technical Article
T1-weighted signal intensity changes in the dentate nucleus after multiple gadolinium-enhanced MRI: A clinical study
FU Nianxia  WU Yingte  SONG Jianxun  WANG Xin  LIN Guohui  ZHONG Liling  YAN Yaoyao 

DOI:10.12015/issn.1674-8034.2026.01.016.


[Abstract] Objective To investigate changes in signal intensity (SI) of the dentate nucleus (DN) on unenhanced T1-weighted magnetic resonance imaging (MRI) scans after multiple administrations of linear gadolinium-based contrast agents (GBCAs), and to analyze its correlation with various clinical factors.Meterials and Methods: Clinical and imaging data of ninety-two patients who underwent at least three consecutive linear GBCA-enhanced MRI examinations at our hospital from January 2015 to December 2024 were analyzed retrospectively. Unenhanced MRI scans were performed before and after consecutive enhanced MRI examinations in all patients. On a post-processing workstation, the mean SI of the DN and the pons were measured on unenhanced T1-weighted images. The SI ration of DN-to-pons was calculated by dividing the SI in the DN by that in the pons. A generalized additive model (GAM) was used to examine the trends and patterns of the SI ratio of DN-to-pons relative to the number of GBCAs administrations. Linear regression analysis was used to examine SI ratio of DN-to-pons correlation with various clinical factors. The incremental changes in the SI ratio of DN-to-pons between consecutive examinations were compared to analyze their trend and a trend analysis was used on the variation pattern.Results The SI ratio of DN-to-pons increased with the cumulative number of linear GBCAs injections, following a non-linear pattern. The SI ratio differences showed a significant correlation with the number of injections (P < 0.001). There was no correlation with other clinical factors (P > 0.05). Analysis of the incremental changes in the ratio after the first 6 enhancements revealed median increments of 1.91, 0.94, 0.93, 0.88, 0.91, and 0.87. A trend test was performed on the incremental changes, revealing statistically significant differences (coefficient of the linear mixed-effects model: -0.215, P < 0.001; coefficient of the polynomial trend analysis: -7.530, P < 0.001).Conclusions Serial injections of linear GBCAs may lead to a non-linear increase in SI in the DN,which correlates with the number of contrast-enhanced examinations, while the rate of increase gradually slows down as the number of such examinations rises.
[Keywords] gadolinium retention;dentate nucleus;gadolinium-based contrast agents;magnetic resonance imaging;signal intensity;incremental changes

FU Nianxia1   WU Yingte2   SONG Jianxun1*   WANG Xin1   LIN Guohui1   ZHONG Liling1   YAN Yaoyao1  

1 Department of Radiology, the People's Hospital of Baoan Shenzhen, Shenzhen 518101, China

2 Department of Critical Care Medicine, the People's Hospital of Baoan Shenzhen, Shenzhen 518101, China

Corresponding author: SONG J X, E-mail: songjianxun@126.com

Conflicts of interest   None.

Received  2025-11-04
Accepted  2026-01-07
DOI: 10.12015/issn.1674-8034.2026.01.016
DOI:10.12015/issn.1674-8034.2026.01.016.

[1]
YUAN S S, XIA L M, YANG Z X, et al. Research status of gadolinium-based contrast on safety[J]. Chin J Magn Reson Imag, 2020, 11(8): 717-720. DOI: 10.12015/issn.1674-8034.2020.08.030.
[2]
XU L, YU C X, DONG L. New progress of gadolinium contrast agent deposition in brain[J]. J Clin Radiol, 2022, 41(4): 794-798. DOI: 10.13437/j.cnki.jcr.2022.04.021.
[3]
ISLAM M T, TSNOBILADZE V. The application, safety, and recent developments of commonly used gadolinium-based contrast agents in MRI: a scoping review[J/OL]. Eur Med J, 2024: 63-73 [2025-11-03]. https://www.emjreviews.com/flagship-journal/article/the-application-safety-and-recent-developments-of-commonly-used-gadolinium-based-contrast-agents-in-mri-a-scoping-review-j190324/. DOI: 10.33590/emj/zrvn2069.
[4]
CHEN Y Z. Nephrogenic systemic fibrosis caused by gadolinium- based contrast agents in magnetic resonance imaging[J]. Chin J Kidney Dis Investig Electron Ed, 2024, 13(6): 358. DOI: 10.3877/cma.j.issn.2095-3216.2024.06.010.
[5]
Quality Control and Safety Management Committee of Chinese Society of Radiology Chinese Medical Association. Chinese expert consensus of gadolinium contrast agent use in patients with renal disease[J]. Chin J Radiol, 2022, 56(3): 221-230. DOI: 10.3760/cma.j.cn112149-20210330-00294.
[6]
AKAI H, MIYAGAWA K, TAKAHASHI K, et al. Effects of gadolinium deposition in the brain on motor or behavioral function: a mouse model[J]. Radiology, 2021, 301(2): 409-416. DOI: 10.1148/radiol.2021210892.
[7]
HE M L. Study on the correlation between the deposition of gadolinium contrast medium in the dentate nucleus and globus pallidus and the signal intensity changes of T1WI and T2WI[J]. Mod Med Imagelogy, 2022, 31(2): 235-238.
[8]
KONG Y, LI M S, CHEN Z D, et al. Increased signal intensity in the dentate nucleus on unenhanced T1-weighted MR images after multiple gadolinium-based contrast material administrations: a preliminary study[J]. Chin J Radiol, 2018, 52(12): 892-896. DOI: 10.3760/cma.j.issn.1005-1201.2018.12.002.
[9]
MCDONALD R J, WEINREB J C, DAVENPORT M S. Symptoms associated with gadolinium exposure (SAGE): a suggested term[J]. Radiology, 2022, 302(2): 270-273. DOI: 10.1148/radiol.2021211349.
[10]
SEMELKA R C, RAMALHO J, VAKHARIA A, et al. Gadolinium deposition disease: Initial description of a disease that has been around for a while[J]. Magn Reson Imaging, 2016, 34(10): 1383-1390. DOI: 10.1016/j.mri.2016.07.016.
[11]
KRÄMER H H, BÜCKER P, JEIBMANN A, et al. Gadolinium contrast agents: dermal deposits and potential effects on epidermal small nerve fibers[J]. J Neurol, 2023, 270(8): 3981-3991. DOI: 10.1007/s00415-023-11740-z.
[12]
SEMELKA R C, RAMALHO M. Physicians with self-diagnosed gadolinium deposition disease: a case series[J]. Radiol Bras, 2021, 54(4): 238-242. DOI: 10.1590/0100-3984.2020.0073.
[13]
HE M L, XIAO Y P, SU S H. Evaluation of gadolinium contrast agent deposition in brain based on T1WI first-order omics features[J]. Chin J CT MRI, 2024, 22(9): 8-10. DOI: 10.3969/j.issn.1672-5131.2024.09.003.
[14]
ZHU H Y, HUANG Z K, WANG Y L, et al. Relationship between high signal intensity in the dentate nucleus on unenhanced T1-weighted MR images and gadolinium contrast agent administration[J]. J Clin Radiol, 2018, 37(1): 130-134. DOI: 10.13437/j.cnki.jcr.2018.01.034.
[15]
AYERS-RINGLER J, MCDONALD J S, CONNORS M A, et al. Neurologic effects of gadolinium retention in the brain after gadolinium-based contrast agent administration[J]. Radiology, 2022, 302(3): 676-683. DOI: 10.1148/radiol.210559.
[16]
LI Q C, SUN L N, QU Y C. Signal intensity change on T1 WI in dentate nucleus after multiple intravenous injections of gadolinium-based contrast agents: a Meta-analysis[J]. J Pract Radiol, 2022, 38(3): 371-375. DOI: 10.3969/j.issn.1002-1671.2022.03.005.
[17]
MCDONALD R J, MCDONALD J S, KALLMES D F, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities[J]. Radiology, 2017, 285(2): 546-554. DOI: 10.1148/radiol.2017161595.
[18]
AL-MUHANNA A F. Gadolinium retention after contrast-enhanced magnetic resonance imaging: a narratative review[J]. Saudi J Med Med Sci, 2022, 10(1): 12-18. DOI: 10.4103/sjmms.sjmms_198_21.
[19]
RICHMOND S B, RANE S, HANSON M R, et al. Quantification approaches for magnetic resonance imaging following intravenous gadolinium injection: a window into brain-wide glymphatic function[J]. Eur J Neurosci, 2023, 57(10): 1689-1704. DOI: 10.1111/ejn.15974.
[20]
TOWBIN A J, ZHANG B, DILLMAN J R. Evaluation of the effect of multiple administrations of gadopentetate dimeglumine or gadoterate meglumine on brain T1-weighted hyperintensity in pediatric patients[J]. Pediatr Radiol, 2021, 51(13): 2568-2580. DOI: 10.1007/s00247-021-05134-4.
[21]
STANESCU A L, SHAW D W, MURATA N, et al. Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: pathological confirmation[J]. Pediatr Radiol, 2020, 50(3): 388-396. DOI: 10.1007/s00247-019-04535-w.
[22]
OUYANG M L, BAO L. Gadolinium contrast agent deposition in children[J]. J Magn Reson Imag, 2025, 61(1): 70-82. DOI: 10.1002/jmri.29389.
[23]
ZAKI N, PARRA D, WELLS Q, et al. Assessment of gadolinium deposition in the brain tissue of pediatric and adult congenital heart disease patients after contrast enhanced cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 82 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/33267835/. DOI: 10.1186/s12968-020-00676-2.
[24]
SCARCIGLIA A, PAPI C, ROMITI C, et al. Gadolinium-based contrast agents (GBCAs) for MRI: a benefit-risk balance analysis from a chemical, biomedical, and environmental point of view[J/OL]. Glob Chall, 2025, 9(3): 2400269 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/40071223/. DOI: 10.1002/gch2.202400269.
[25]
OZTURK K, NASCENE D. Effect of at least 10 serial gadobutrol administrations on brain signal intensity ratios on T1-weighted MRI in children: a matched case-control study[J]. AJR Am J Roentgenol, 2021, 217(3): 753-760. DOI: 10.2214/AJR.20.24536.
[26]
LAYNE K A, WOOD D M, DARGAN P I. Gadolinium-based contrast agents - what is the evidence for 'gadolinium deposition disease' and the use of chelation therapy [J]. Clin Toxicol, 2020, 58(3): 151-160. DOI: 10.1080/15563650.2019.1681442.
[27]
MARASINI R, THANH NGUYEN T D, ARYAL S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging[J/OL]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(1): e1580 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/31486295/. DOI: 10.1002/wnan.1580.
[28]
PARILLO M, MALLIO C A, VAN DER MOLEN A J, et al. Skin toxicity after exposure to gadolinium-based contrast agents in normal renal function, using clinical approved doses: current status of preclinical and clinical studies[J]. Invest Radiol, 2023, 58(8): 530-538. DOI: 10.1097/RLI.0000000000000973.
[29]
RASSCHAERT M, COULOUMY E, RENARD E, et al. Overall gadolinium exposure within the first 5 Months after injection of human equivalent doses of gadopiclenol, gadoterate, or gadobutrol in healthy rats[J]. Invest Radiol, 2025, 60(11): 753-767. DOI: 10.1097/RLI.0000000000001194.
[30]
JOST G, FRENZEL T, BOYKEN J, et al. Impact of brain tumors and radiotherapy on the presence of gadolinium in the brain after repeated administration of gadolinium-based contrast agents: an experimental study in rats[J]. Neuroradiology, 2019, 61(11): 1273-1280. DOI: 10.1007/s00234-019-02256-3.
[31]
MENTZELOPOULOS A, GKIATIS K, KARANASIOU I, et al. Chemotherapy-induced brain effects in small-cell lung cancer patients: a multimodal MRI study[J]. Brain Topogr, 2021, 34(2): 167-181. DOI: 10.1007/s10548-020-00811-3.
[32]
WANG J H, SALZILLO T, JIANG Y Y, et al. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac[J/OL]. Radiother Oncol, 2021, 161: 55-64 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/34089753/. DOI: 10.1016/j.radonc.2021.05.023.
[33]
BOYKEN J, LOHRKE J, TREU A, et al. Gadolinium presence in rat skin: assessment of histopathologic changes associated with small fiber neuropathy[J/OL]. Radiology, 2024, 310(1): e231984 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/38226877/. DOI: 10.1148/radiol.231984.
[34]
LE FUR M, MOON B F, ZHOU I Y, et al. Gadolinium-based contrast agent biodistribution and speciation in rats[J/OL]. Radiology, 2023, 309(1): e230984 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/37874235/. DOI: 10.1148/radiol.230984.
[35]
DAMME N M, FERNANDEZ D P, WANG L M, et al. Analysis of retention of gadolinium by brain, bone, and blood following linear gadolinium-based contrast agent administration in rats with experimental sepsis[J]. Magn Reson Med, 2020, 83(6): 1930-1939. DOI: 10.1002/mrm.28060.
[36]
MARTINO F, AMICI G, ROSNER M, et al. Gadolinium-based contrast media nephrotoxicity in kidney impairment: the physio-pathological conditions for the perfect murder[J/OL]. J Clin Med, 2021, 10(2): 271 [2025-11-03]. https://pubmed.ncbi.nlm.nih.gov/33450989/. DOI: 10.3390/jcm10020271.
[37]
LIN X, ZENG M S, WANG J, et al. Correlation between repeated injections of gadolinium contrast agent and gadolinium deposition in the brain[J]. J Pract Radiol, 2020, 36(11): 1853-1856, 1876. DOI: 10.3969/j.issn.1002-1671.2020.11.037.

PREV The diagnostic value of radiomics features of the lateral pterygoid muscle, articular disc, and bilaminar zone on MRI in temporomandibular disorders
NEXT MRI diagnosis of atypical meningioma arising from the septum pellucidum: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn