Share:
Share this content in WeChat
X
Review
Advances in magnetic resonance imaging of fetal brain development
YANG Weixin  WANG Rongpin 

DOI:10.12015/issn.1674-8034.2026.01.019.


[Abstract] Fetal magnetic resonance imaging (MRI) is an advanced prenatal imaging diagnostic technology. Beyond the scope of traditional anatomical examinations, it enables non-invasive assessment of in utero metabolic and functional development of the fetal brain and other organs. With the rapid advancement of magnetic resonance technology, fetal functional MRI is expected to become a powerful method for understanding fetal development and early identification of neurological abnormalities and other fetal diseases. At present, the research on fetal magnetic resonance imaging in China mainly focuses on the assessment of normal fetal nervous system development and the study of brain structure in malformed fetuses. However, there is a lack of research on the trajectory of fetal brain functional development, prediction of birth outcomes, and neurobehavioral abilities. This article mainly discusses the progress in magnetic resonance research on fetal brain venous development, metabolism, microstructure, and functional connectivity, and points out the future research directions. This review will provide new methods for evaluating the normal brain development pattern of the fetus and early detection of fetal brain development abnormalities. By observing changes in brain function and metabolic activity, abnormal metabolism and neural signals can be identified, providing a basis for early diagnosis and postnatal treatment of diseases.
[Keywords] fetal;magnetic resonance imaging;diffusion weighted imaging;diffusion tensor imaging;susceptibility weighted imaging;intravoxel incoherent motion;magnetic resonance spectroscopy;rest-state function magnetic resonance imaging

YANG Weixin1   WANG Rongpin2*  

1 Department of Radiology, Suining Central Hospital, Suining 629000, China

2 Department of Radiology, Guizhou Provincial People's Hospital, Guiyang 550002, China

Corresponding author: WANG R P, E-mail: wangrongpin@126.com

Conflicts of interest   None.

Received  2025-10-16
Accepted  2025-12-09
DOI: 10.12015/issn.1674-8034.2026.01.019
DOI:10.12015/issn.1674-8034.2026.01.019.

[1]
POWERS A M, WHITE C, NEUBERGER I, et al. Fetal MRI Neuroradiology: Indications[J]. Clin Perinatol, 2022, 49(3): 573-586. DOI: 10.1016/j.clp.2022.05.001.
[2]
CICERI T, CASARTELLI L, MONTANO F, et al. Fetal brain MRI atlases and datasets: A review[J/OL]. Neuroimage, 2024, 292: 120603 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38588833/. DOI: 10.1016/j.neuroimage.2024.120603.
[3]
GEDIK ÖZKÖSE Z, OĞLAK S C, BESTEL A, et al. Fetal intracranial hemorrhage: prenatal sonographic diagnosis criteria and postnatal outcomes[J]. J Turk Ger Gynecol Assoc, 2022, 23(4): 268-274. DOI: 10.4274/jtgga.galenos.2021.2021-0042.
[4]
TAVARES DE SOUSA M, SCHÖNNAGEL B P, DENECKE J, et al. Prenatal imaging-role of fetal MRI[J]. Rofo, 2025, 197(4): 385-396. DOI: 10.1055/a-2357-6997.
[5]
GIORGIONE V, HARATZ K K, CONSTANTINI S, et al. Fetal cerebral ventriculomegaly: What do we tell the prospective parents?[J]. Prenat Diagn, 2022, 42(13): 1674-1681. DOI: 10.1002/pd.6266.
[6]
KOBAL L, SURLAN POPOVIC K, AVSENIK J, et al. ADC values as a biomarker of fetal brain maturation[J]. Radiol Oncol, 2023, 57(2): 178-183. DOI: 10.2478/raon-2023-0022.
[7]
CHANDRA SEKHAR P, RANGASAMI R, ANDREW C, et al. Measurement of apparent diffusion coefficient (ADC) in fetal organs and placenta using 3 Tesla magnetic resonance imaging (MRI) across gestational ages[J/OL]. Sci Rep, 2024, 14(1): 23811 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39394357/. DOI: 10.1038/s41598-024-73902-x.
[8]
SEGEV M, DJURABAYEV B, KATORZA E, et al. 3.0 Tesla normative diffusivity in 3rd trimester fetal brain[J]. Neuroradiology, 2022, 64(6): 1249-1254. DOI: 10.1007/s00234-021-02863-z.
[9]
SCHÖNBERG N, WEISSTANNER C, WIEST R, et al. The Influence of Various Cerebral and Extracerebral Pathologies on Apparent Diffusion Coefficient Values in the Fetal Brain[J]. J Neuroimaging, 2020, 30(4): 477-485. DOI: 10.1111/jon.12727.
[10]
REN J Y, ZHU M, DONG S Z. Sex differences in normal fetal regional brain apparent diffusion coefficient changes assessed by in utero DWI[J/OL]. Front Pediatr, 2024, 12: 1354475 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38567183/. DOI: 10.3389/fped.2024.1354475.
[11]
AERTSEN M, DYMARKOWSKI S, VANDER MIJNSBRUGGE W, et al. Anatomical and diffusion-weighted imaging of brain abnormalities in third-trimester fetuses with cytomegalovirus infection[J]. Ultrasound Obstet Gynecol, 2022, 60(1): 68-75. DOI: 10.1002/uog.24856.
[12]
WANG A, HUO R, WEI Y, et al. Evaluation of brain microstructure changes in surviving fetus of monochorionic twin pregnancies with single intrauterine fetal death using diffusion weighted imaging: a MRI-based cohort study[J/OL]. BMC Med Imaging, 2025, 25(1): 70 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40033237/. DOI: 10.1186/s12880-025-01609-0.
[13]
GLASS H C, WOOD T R, COMSTOCK B A, et al. Predictors of Death or Severe Impairment in Neonates With Hypoxic-Ischemic Encephalopathy[J/OL]. JAMA Netw Open, 2024, 7(12): e2449188 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39636636/. DOI: 10.1001/jamanetworkopen.2024.49188.
[14]
SHROT S, SOARES B P, WHITEHEAD M T. Cerebral Diffusivity Changes in Fetuses with Chiari II Malformation[J]. Fetal Diagn Ther, 2019, 45(4): 268-274. DOI: 10.1159/000490102.
[15]
REN J Y, JI H, ZHU M, et al. DWI in Brains of Fetuses with Congenital Heart Disease: A Case-Control MR Imaging Study[J]. AJNR Am J Neuroradiol, 2021, 42(11): 2040-2045. DOI: 10.3174/ajnr.A7267.
[16]
ZHENG W, YAN G, JIANG Y, et al. Diffusion-Weighted MRI of the Fetal Brain in Fetal Growth Restriction With Maternal Preeclampsia or Gestational Hypertension[J]. J Magn Reson Imaging, 2024, 59(4): 1384-1393. DOI: 10.1002/jmri.28861.
[17]
JOUANNIC J M, BLONDIAUX E, SENAT M V, et al. Prognostic value of diffusion-weighted magnetic resonance imaging of brain in fetal growth restriction: results of prospective multicenter study[J]. Ultrasound Obstet Gynecol, 2020, 56(6): 893-900. DOI: 10.1002/uog.21926.
[18]
MEIJERINK L, VAN OOIJEN I, TERSTAPPEN F, et al. Fetal MRI study of brain differences in early-onset fetal growth restriction versus healthy controls at 30 weeks of gestation[J/OL]. Eur J Obstet Gynecol Reprod Biol X, 2025, 27: 100417 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40689344/. DOI: 10.1016/j.eurox.2025.100417.
[19]
MEIJERINK L, VAN OOIJEN I M, ALDERLIESTEN T, et al. Fetal brain development in fetal growth restriction using MRI: a systematic review[J/OL]. BMC Pregnancy Childbirth, 2025, 25(1): 208 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40012049/. DOI: 10.1186/s12884-024-07124-4.
[20]
VASQUEZ-VIVAR J, SHI Z, JEONG J W, et al. Neuronal vulnerability to fetal hypoxia-reoxygenation injury and motor deficit development relies on regional brain tetrahydrobiopterin levels[J/OL]. Redox Biol, 2020, 29: 101407 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/31926630/. DOI: 10.1016/j.redox.2019.101407.
[21]
ASHWAL E, BLASER S, LECKIE A, et al. Anterior extension of the choroid plexus into the frontal horns of the fetal lateral cerebral ventricles: Prenatal findings and postnatal outcome[J]. Prenat Diagn, 2023, 43(6): 756-762. DOI: 10.1002/pd.6344.
[22]
YADAV B K, HERNANDEZ-ANDRADE E, KRISHNAMURTHY U, et al. Dual-Imaging Modality Approach to Evaluate Cerebral Hemodynamics in Growth-Restricted Fetuses: Oxygenation and Perfusion[J]. Fetal Diagn Ther, 2020, 47(2): 145-155. DOI: 10.1159/000500954.
[23]
ZHAO X, CAO Y, YI Z, et al. Advancements in MRI application in the morphological development of fetal cerebral venous system: a review[J/OL]. Childs Nerv Syst, 2025, 41(1): 201 [2025-10-16].https://pubmed.ncbi.nlm.nih.gov/40455317/. DOI: 10.1007/s00381-025-06862-w.
[24]
CORROENNE R, PAPASTEFANOU I, MAHALLATI H, et al. Evolution of magnetic resonance diffusion tensor imaging metrics in the normal fetal brain[J]. Ultrasound Obstet Gynecol, 2025, 66(2): 226-232. DOI: 10.1002/uog.29275.
[25]
CALIXTO C, MACHADO-RIVAS F, CORTES-ALBORNOZ M C, et al. Characterizing microstructural development in the fetal brain using diffusion MRI from 23 to 36 weeks of gestation[J/OL]. Cereb Cortex, 2024, 34(1): bhad409 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/37948665/. DOI: 10.1093/cercor/bhad409.
[26]
CALIXTO C, DORIGATTI SOLDATELLI M, JAIMES C, et al. A detailed spatiotemporal atlas of the white matter tracts for the fetal brain[J/OL]. Proc Natl Acad Sci U S A, 2025, 122(1): e2410341121 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39793058/. DOI: 10.1073/pnas.2410341121.
[27]
CALIXTO C, MACHADO-RIVAS F, KARIMI D, et al. Detailed anatomic segmentations of a fetal brain diffusion tensor imaging atlas between 23 and 30 weeks of gestation[J]. Hum Brain Mapp, 2023, 44(4): 1593-1602. DOI: 10.1002/hbm.26160.
[28]
CALIXTO C, CORTES-ALBORNOZ M C, VELASCO-ANNIS C, et al. Regional Changes in the Fetal Telencephalic Wall Diffusion Metrics Across Late Second and Third Trimesters[J/OL]. Hum Brain Mapp, 2025, 46(3): e70159 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39950579/. DOI: 10.1002/hbm.70159.
[29]
LAMON S, DE DUMAST P, SANCHEZ T, et al. Assessment of fetal corpus callosum biometry by 3D super-resolution reconstructed T2-weighted magnetic resonance imaging[J/OL]. Front Neurol, 2024, 15: 1358741 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38595845/. DOI: 10.3389/fneur.2024.1358741.
[30]
CORROENNE R, GREVENT D, MAHALLATI H, et al. Quantitative fetal MRI with diffusion tensor imaging in cases with 'short' corpus callosum[J]. Ultrasound Obstet Gynecol, 2024, 63(3): 385-391. DOI: 10.1002/uog.27473.
[31]
GHAZI SHERBAF F, AARABI M H, HOSEIN YAZDI M, et al. White matter microstructure in fetal alcohol spectrum disorders: A systematic review of diffusion tensor imaging studies[J]. Hum Brain Mapp, 2019, 40(3): 1017-1036. DOI: 10.1002/hbm.24409.
[32]
DUDLEY J A, NAGARAJ U D, MERHAR S, et al. DTI of Opioid-Exposed Fetuses Using ComBat Harmonization: A Bi-Institutional Study[J]. AJNR Am J Neuroradiol, 2023, 44(9): 1084-1089. DOI: 10.3174/ajnr.A7951.
[33]
DIBBLE M, O'DEA M I, HURLEY T, et al. Diffusion tensor imaging in neonatal encephalopathy: a systematic review[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(5): 480-488. DOI: 10.1136/archdischild-2019-318025.
[34]
LIPIŃSKI K, BOGORODZKI P. Evaluation of Whole Brain Intravoxel Incoherent Motion (IVIM) Imaging[J/OL]. Diagnostics (Basel), 2024, 14(6): 653 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38535073/. DOI: 10.3390/diagnostics14060653.
[35]
JAKAB A, TUURA R L, KOTTKE R, et al. Microvascular perfusion of the placenta, developing fetal liver, and lungs assessed with intravoxel incoherent motion imaging[J]. J Magn Reson Imaging, 2018, 48(1): 214-225. DOI: 10.1002/jmri.25933.
[36]
YUAN X, YUE C, YU M, et al. Fetal brain development at 25-39 weeks gestational age: A preliminary study using intravoxel incoherent motion diffusion-weighted imaging[J]. J Magn Reson Imaging, 2019, 50(3): 899-909. DOI: 10.1002/jmri.26667.
[37]
JAKAB A, TUURA R, KOTTKE R, et al. Intra-voxel incoherent motion MRI of the living human foetus: technique and test-retest repeatability[J/OL]. Eur Radiol Exp, 2017, 1(1): 26 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/29708192/. DOI: 10.1186/s41747-017-0031-4.
[38]
URBANIK A, CICHOCKA M, KOZUB J, et al. Evaluation of changes in biochemical composition of fetal brain between 18th and 40th gestational week in proton magnetic resonance spectroscopy[J]. J Matern Fetal Neonatal Med, 2019, 32(15): 2493-2499. DOI: 10.1080/14767058.2018.1439009.
[39]
PRADHAN S, KAPSE K, JACOBS M, et al. Non-invasive measurement of biochemical profiles in the healthy fetal brain[J/OL]. Neuroimage, 2020, 219: 117016 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/32526384/. DOI: 10.1016/j.neuroimage.2020.117016.
[40]
SADAN O R, AVISDRIS N, RABINOWICH A, et al. Brain Metabolite Differences in Fetuses With Cytomegalovirus Infection: A Magnetic Resonance Spectroscopy Study[J]. J Magn Reson Imaging, 2025, 61(3): 1133-1141. DOI: 10.1002/jmri.29507.
[41]
ANDESCAVAGE N N, PRADHAN S, GIMOVSKY A C, et al. Magnetic Resonance Spectroscopy of Brain Metabolism in Fetuses With Congenital Heart Disease[J]. J Am Coll Cardiol, 2023, 82(16): 1614-1623. DOI: 10.1016/j.jacc.2023.08.013.
[42]
WU Y, LU Y C, JACOBS M, et al. Association of Prenatal Maternal Psychological Distress With Fetal Brain Growth, Metabolism, and Cortical Maturation[J/OL]. JAMA Netw Open, 2020, 3(1): e1919940 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/31995213/. DOI: 10.1001/jamanetworkopen.2019.19940.
[43]
KATSUKI S, USHIDA T, KIDOKORO H, et al. Hypertensive disorders of pregnancy and alterations in brain metabolites in preterm infants: A multi-voxel proton MR spectroscopy study[J/OL]. Early Hum Dev, 2021, 163: 105479 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/34624700/. DOI: 10.1016/j.earlhumdev.2021.105479.
[44]
FANG Q, LIU J, CHEN L, et al. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis[J]. Metab Brain Dis, 2022, 37(6): 2077-2088. DOI: 10.1007/s11011-021-00896-0.
[45]
TANG S, XU S, WADDELL J, et al. Functional Connectivity and Metabolic Alterations in Medial Prefrontal Cortex in a Rat Model of Fetal Alcohol Spectrum Disorder: A Resting-State Functional Magnetic Resonance Imaging and in vivo Proton Magnetic Resonance Spectroscopy Study[J]. Dev Neurosci, 2019, 41(1-2): 67-78. DOI: 10.1159/000499183.
[46]
MIGLIOLI C, CANINI M, VIGNOTTO E, et al. The maternal-fetal neurodevelopmental groundings of preterm birth risk[J/OL]. Heliyon, 2024, 10(7): e28825 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38596101/. DOI: 10.1016/j.heliyon.2024.e28825.
[47]
DESROSIERS J, CARON-DESROCHERS L, RENÉ A, et al. Functional connectivity development in the prenatal and neonatal stages measured by functional magnetic resonance imaging: A systematic review[J/OL]. Neurosci Biobehav Rev, 2024, 163: 105778 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/38936564/. DOI: 10.1016/j.neubiorev.2024.105778.
[48]
KIM J H, DE ASIS-CRUZ J, COOK K M, et al. Gestational age-related changes in the fetal functional connectome: in utero evidence for the global signal[J]. Cereb Cortex, 2023, 33(5): 2302-2314. DOI: 10.1093/cercor/bhac209.
[49]
JI L, MENU I, MAJBRI A, et al. Trajectories of human brain functional connectome maturation across the birth transition[J/OL]. PLoS Biol, 2024, 22(11): e3002909 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/39561110/. DOI: 10.1371/journal.pbio.3002909.
[50]
GOLDBERG E, MCKENZIE C A, DE VRIJER B, et al. Fetal Response to a Maternal Internal Auditory Stimulus[J]. J Magn Reson Imaging, 2020, 52(1): 139-145. DOI: 10.1002/jmri.27033.
[51]
CARA C, CANINI M, OPRANDI C, et al. Prenatal brain connectivity and postnatal language: how familial risk and prenatal speech exposure shape early language skills[J/OL]. Sci Rep, 2025, 15(1): 33281 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/41006557/. DOI: 10.1038/s41598-025-17531-y.
[52]
CALIXTO C, MACHADO-RIVAS F, KARIMI D, et al. Population Atlas Analysis of Emerging Brain Structural Connections in the Human Fetus[J]. J Magn Reson Imaging, 2024, 60(1): 152-160. DOI: 10.1002/jmri.29057.
[53]
HENDRIX C L, JI L, WERCHAN D M, et al. Fetal Frontolimbic Connectivity Prospectively Associates With Aggression in Toddlers[J]. Biol Psychiatry Glob Open Sci, 2023, 3(4): 969-978. DOI: 10.1016/j.bpsgos.2022.09.003.
[54]
VAN DEN HEUVEL M I, MONK C, HENDRIX C L, et al. Intergenerational Transmission of Maternal Childhood Maltreatment Prior to Birth: Effects on Human Fetal Amygdala Functional Connectivity[J]. J Am Acad Child Adolesc Psychiatry, 2023, 62(10): 1134-1146. DOI: 10.1016/j.jaac.2023.03.020.
[55]
KIM J H, DE ASIS-CRUZ J, COOK K M, et al. Evaluating the effects of volume censoring on fetal functional connectivity[J/OL]. Sci Rep, 2025, 15(1): 13181 [2025-10-16]. https://pubmed.ncbi.nlm.nih.gov/40240427/. DOI: 10.1038/s41598-025-96538-x.

PREV Native T1 mapping value significantly prolongs cardiac fibroma: One case report
NEXT Research progress on multimodal structural-functional MRI studies of hierarchical large-scale brain network abnormalities in autism spectrum disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn