Share:
Share this content in WeChat
X
Review
Research progress on multimodal structural-functional MRI studies of hierarchical large-scale brain network abnormalities in autism spectrum disorder
XU Yuanyuan  ZHANG Guomin  WU Guangrong  FANG Jie  XIONG Siyan  YANG Wei 

DOI:10.12015/issn.1674-8034.2026.01.020.


[Abstract] Autism spectrum disorder (ASD) is a neurodevelopmental condition that emerges in early childhood, characterized by social communication difficulties and restricted, repetitive behaviors. Despite their diverse symptoms, individuals with ASD may have shared neurobiological characteristics. Advances in MRI now allow researchers to study brain network abnormalities in ASD from multiple, noninvasive perspectives. This review highlights recent studies using diffusion and functional MRI, covering tract-based spatial statistics, graph theory analyses, functional gradient mapping, and sliding-window approaches. We focus on how these methods help reveal white matter integrity, functional coordination, and hierarchical brain organization in ASD. We also discuss the potential of multimodal image fusion and artificial intelligence (AI) for ASD subtype identification and auxiliary diagnosis. Overall, findings from multimodal MRI indicate cross-scale alterations of brain networks in ASD, providing new imaging evidence for understanding its neural mechanisms and for supporting early identification and individualized intervention. On this basis, we briefly outline the main limitations of current research and, from an integrated perspective spanning "microstructure-large-scale function-structure-function coupling-multimodal analysis", propose future research directions to inform radiologists and neuroscience researchers.
[Keywords] autism spectrum disorder;multimodal magnetic resonance imaging;magnetic resonance imaging;large-scale brain networks;structure-function coupling;machine learning

XU Yuanyuan   ZHANG Guomin   WU Guangrong   FANG Jie   XIONG Siyan   YANG Wei*  

Department of Radiology, the Third Affiliated Hospital of Zunyi Medical University (the First People's Hospital of Zunyi), Zunyi 563000, China

Corresponding author: YANG W, E-mail: yangwei@zmu.edu.cn

Conflicts of interest   None.

Received  2025-09-30
Accepted  2025-12-12
DOI: 10.12015/issn.1674-8034.2026.01.020
DOI:10.12015/issn.1674-8034.2026.01.020.

[1]
FIRST M B, CLARKE D E, YOUSIF L, et al. DSM-5-TR: rationale, process, and overview of changes[J]. Psychiatr Serv, 2023, 74(8): 869-875. DOI: 10.1176/appi.ps.20220334.
[2]
TALANTSEVA O I, ROMANOVA R S, SHURDOVA E M, et al. The global prevalence of autism spectrum disorder: a three-level meta-analysis[J/OL]. Front Psychiatry, 2023, 14: 1071181 [2025-09-30]. https://doi.org/10.3389/fpsyt.2023.1071181. DOI: 10.3389/fpsyt.2023.1071181.
[3]
HODGES H, FEALKO C, SOARES N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation[J]. Transl Pediatr, 2020, 9: 55-65. DOI: 10.21037/tp.2019.09.09.
[4]
MCKENNA F, MILES L, DONALDSON J, et al. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder[J/OL]. Sci Rep, 2020, 10(1): 21465 [2025-09-30]. https://doi.org/10.1038/s41598-020-78486-w. DOI: 10.1038/s41598-020-78486-w.
[5]
NAGAI Y, KIRINO E, TANAKA S, et al. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI[J]. Cereb Cortex, 2024, 34(13): 129-145. DOI: 10.1093/cercor/bhad451.
[6]
SHUKLA D, KEEHN B, MÜLLER R, et al. Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder[J]. J Child Psychol Psychiatry, 2011, 52(3): 286-295. DOI: 10.1111/j.1469-7610.2010.02342.x.
[7]
QIAN L, WANG Y, CHU K, et al. Alterations in hub organization in the white matter structural network in toddlers with autism spectrum disorder: a 2-year follow-up study[J]. Autism Res, 2018, 11(9): 1218-1228. DOI: 10.1002/aur.1983.
[8]
IM W, HA J, KIM E J, et al. Impaired white matter integrity and social cognition in high-function autism: diffusion tensor imaging study[J]. Psychiatry Investig, 2018, 15: 292-299. DOI: 10.30773/pi.2017.08.15.
[9]
LI M, WANG Y, TACHIBANA M, et al. Atypical structural connectivity of language networks in autism spectrum disorder: a meta-analysis of diffusion tensor imaging studies[J]. Autism Res, 2022, 15: 1585-1602. DOI: 10.1002/aur.2789.
[10]
HATTORI A, KAMAGATA K, KIRINO E, et al. White matter alterations in adults with autism spectrum disorder evaluated using diffusion kurtosis imaging[J]. Neuroradiology, 2019: 1-11. DOI: 10.1007/s00234-019-02238-5.
[11]
SUI Y V, DONALDSON J, MILES L, et al. Diffusional kurtosis imaging of the corpus callosum in autism[J/OL]. Mol Autism, 2018, 9: 62 [2025-09-30]. https://doi.org/10.1186/s13229-018-0245-1. DOI: 10.1186/s13229-018-0245-1.
[12]
ANDICA C, KAMAGATA K, KIRINO E, et al. Neurite orientation dispersion and density imaging reveals white matter microstructural alterations in adults with autism[J/OL]. Mol Autism, 2021, 12(1): 48 [2025-09-30]. https://doi.org/10.1186/s13229-021-00456-4. DOI: 10.1186/s13229-021-00456-4.
[13]
ARAI T, KAMAGATA K, UCHIDA W, et al. Reduced neurite density index in the prefrontal cortex of adults with autism assessed using neurite orientation dispersion and density imaging[J/OL]. Front Neurol, 2023, 14: 1110883 [2025-09-30]. https://doi.org/10.3389/fneur.2023.1110883. DOI: 10.3389/fneur.2023.1110883.
[14]
YASUNO F, MAKINODAN M, TAKAHASHI M, et al. Microstructural anomalies evaluated by neurite orientation dispersion and density imaging are related to deficits in facial emotional recognition via perceptual-binding difficulties in autism spectrum disorder[J]. Autism Res, 2020, 13(5): 729-740. DOI: 10.1002/aur.2280.
[15]
KITAMURA S, MATSUOKA K, TAKAHASHI M, et al. Association of adverse childhood experiences and cortical neurite density alterations with posttraumatic stress disorder symptoms in autism spectrum disorder[J/OL]. Front Psychiatry, 2023, 14: 1215429 [2025-09-30]. https://doi.org/10.3389/fpsyt.2023.1215429. DOI: 10.3389/fpsyt.2023.1215429.
[16]
SINGH A P, FROMANDI M, PIMENTEL-ALARCÓN D, et al. Intrinsic gene expression correlates of the biophysically modeled diffusion magnetic resonance imaging signal[J/OL]. Biol Psychiatry Glob Open Sci, 2025, 5(2): 100430 [2025-09-30]. https://doi.org/10.1016/j.bpsgos.2024.100430. DOI: 10.1016/j.bpsgos.2024.100430.
[17]
ZHANG S, JIANG L, HU Z, et al. T1w/T2w ratio maps identify children with autism spectrum disorder and the relationships between myelin-related changes and symptoms[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2024, 134: 111040 [2025-09-30]. https://doi.org/10.1016/j.pnpbp.2024.111040. DOI: 10.1016/j.pnpbp.2024.111040.
[18]
ZHOU X, LIN W S, ZOU F Y, et al. Biomarkers of preschool children with autism spectrum disorder: quantitative analysis of whole-brain tissue component volumes, intelligence scores, ADOS-CSS, and ages of first-word production and walking onset[J]. World J Pediatr, 2024, 20(10): 1059-1069. DOI: 10.1007/s12519-024-00800-7.
[19]
JU J, YANG X, JIANG J, et al. Structural and lipidomic alterations of striatal myelin in 16p11.2 deletion mouse model of autism spectrum disorder[J/OL]. Front Cell Neurosci, 2021, 15: 718720 [2025-09-30]. https://doi.org/10.3389/fncel.2021.718720. DOI: 10.3389/fncel.2021.718720.
[20]
HAN Y, XIONG W, LIU J, et al. Associations of serum cytokine levels and interleukin-6-572C/G polymorphism with myelin damage in Chinese children with autism spectrum disorder[J]. Neuroscience, 2021, 465: 95-104. DOI: 10.1016/j.neuroscience.2021.04.006.
[21]
HARIKUMAR A, EVANS D W, DOUGHERTY C C, et al. A review of the default mode network in autism spectrum disorders and attention deficit hyperactivity disorder[J]. Brain Connect, 2021, 11: 253-263. DOI: 10.1089/brain.2020.0865.
[22]
ZHANG M Y, SHEN Y, YUE X P, et al. Abnormal whole-brain functional connectivity of the left hippocampus in children with autism spectrum disorder: an rs-fMRI study[J]. Chin J Magn Reson Imag, 2024, 15(10): 80-85, 92. DOI: 10.12015/issn.1674-8034.2024.10.014.
[23]
ZHOU R, SUN C, SUN M, et al. Altered intra- and inter-network connectivity in autism spectrum disorder[J]. Aging (Albany NY), 2024, 16(11): 10004-10015. DOI: 10.18632/aging.205913.
[24]
TARCHI L, DAMIANI S, VITTORI P L T, et al. Progressive voxel-wise homotopic connectivity from childhood to adulthood: age-related functional asymmetry in resting-state functional magnetic resonance imaging[J/OL]. Dev Psychobiol, 2023, 65(2): e22366 [2025-09-30]. https://doi.org/10.1002/dev.22366. DOI: 10.1002/dev.22366.
[25]
REN P, BI Q, PANG W, et al. Stratifying autism spectrum disorder and characterizing the functional connectivity of subtypes in resting-state fMRI[J/OL]. Behav Brain Res, 2023, 449: 114458 [2025-09-30]. https://doi.org/10.1016/j.bbr.2023.114458. DOI: 10.1016/j.bbr.2023.114458.
[26]
PHILIP R C M, DAUVERMANN M, WHALLEY H, et al. A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders[J]. Neurosci Biobehav Rev, 2012, 36: 901-942. DOI: 10.1016/j.neubiorev.2011.10.008.
[27]
CHOI U S, KIM S Y, SIM H J, et al. Abnormal brain activity in social reward learning in children with autism spectrum disorder: an fMRI study[J]. Yonsei Med J, 2015, 56(3): 705-711. DOI: 10.3349/ymj.2015.56.3.705.
[28]
CHEN T, GAU S S F, WU Y Y, et al. Neural substrates of theory of mind in adults with autism spectrum disorder: an fMRI study of the social animation task[J]. J Formos Med Assoc, 2023, 122(7): 621-628. DOI: 10.1016/j.jfma.2022.10.009.
[29]
LOODEN T, FLORIS D L, LLERA A, et al. Patterns of connectome variability in autism across five functional activation tasks: findings from the LEAP project[J/OL]. Mol Autism, 2022, 13(1): 53 [2025-09-30]. https://doi.org/10.1186/s13229-022-00529-y. DOI: 10.1186/s13229-022-00529-y.
[30]
NAZARI R, SALEHI M. Early development of the functional brain network in newborns[J]. Brain Struct Funct, 2023, 228: 1725-1739. DOI: 10.1007/s00429-023-02681-4.
[31]
QIN B, WANG L, CAI J, et al. Functional brain networks in preschool children with autism spectrum disorders[J/OL]. Front Psychiatry, 2022, 13: 896388 [2025-09-30]. https://doi.org/10.3389/fpsyt.2022.896388. DOI: 10.3389/fpsyt.2022.896388.
[32]
KEOWN C, DATKO M, CHEN C P, et al. Network organization is globally atypical in autism: a graph theory study of intrinsic functional connectivity[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2017, 2(1): 66-75. DOI: 10.1016/j.bpsc.2016.07.008.
[33]
SIGAR P, UDDIN L Q, ROY D. Altered global modular organization of intrinsic functional connectivity in autism arises from atypical node-level processing[J]. Autism Res, 2023, 16(1): 66-83. DOI: 10.1002/aur.2840.
[34]
HARLALKA V, BAPI R S, VINOD P K, et al. Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder[J/OL]. Front Hum Neurosci, 2019, 13: 6 [2025-09-30]. https://doi.org/10.3389/fnhum.2019.00006. DOI: 10.3389/fnhum.2019.00006.
[35]
PRASAD P K C, DADI K, BAPI R S. Dynamic functional connectivity analysis in individuals with autism spectrum disorder[C]. 2023 International Joint Conference on Neural Networks (IJCNN), 2023: 1-7. DOI: 10.1109/IJCNN54540.2023.10191252.
[36]
ZHUANG W, JIA H, LIU Y, et al. Identification and analysis of autism spectrum disorder via large-scale dynamic functional network connectivity[J]. Autism Res, 2023, 16: 1512-1526. DOI: 10.1002/aur.2974.
[37]
RUAN L, CHEN G, YAO M, et al. Brain functional gradient and structure features in adolescent and adult autism spectrum disorders[J/OL]. Hum Brain Mapp, 2024, 45(11): e26792 [2025-09-30]. https://doi.org/10.1002/hbm.26792. DOI: 10.1002/hbm.26792.
[38]
GUO H, YIN W, MOSTAFA S, et al. Diagnosis of ASD from rs-fMRI images based on brain dynamic networks[C]//CAI Z, MANDOIU I, NARASIMHAN G, et al., eds. Bioinformatics research and applications. Cham: Springer International Publishing, 2020: 166-177. DOI: 10.1007/978-3-030-57821-3_15.
[39]
MEI T, FORDE N J, FLORIS D L, et al. Autism is associated with interindividual variations of gray and white matter morphology[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2023, 8(11): 1084-1093. DOI: 10.1016/j.bpsc.2022.08.011.
[40]
SAPONARO S, GIULIANO A, BELLOTTI R, et al. Multi-site harmonization of MRI data uncovers machine-learning discrimination capability in barely separable populations: an example from the ABIDE dataset[J/OL]. Neuroimage Clin, 2022, 35: 103082 [2025-09-30]. https://doi.org/10.1016/j.nicl.2022.103082 DOI: 10.1016/j.nicl.2022.103082.
[41]
BI X A, WANG Y, SHU Q, et al. Classification of autism spectrum disorder using random support vector machine cluster[J/OL]. Front Genet, 2018, 9: 18 [2025-09-30]. https://doi.org/10.3389/fgene.2018.00018. DOI: 10.3389/fgene.2018.00018.
[42]
SHEN Y, ZHAO X, WANG K, et al. Exploring white matter abnormalities in young children with autism spectrum disorder: integrating multi-shell diffusion data and machine learning analysis[J]. Acad Radiol, 2024, 31(5): 2074-2084. DOI: 10.1016/j.acra.2023.12.023.
[43]
HE X, ZHAO X, SUN Y, et al. Application of TBSS-based machine learning models in the diagnosis of pediatric autism[J/OL]. Front Neurol, 2022, 13: 1078147 [2025-09-30]. https://doi.org/10.3389/fneur.2022.1078147. DOI: 10.3389/fneur.2022.1078147.
[44]
REITER M A, JAHEDI A, FREDO A R JAC, et al. Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity[J]. Neural Comput Appl, 2021, 33(8): 3299-3310. DOI: 10.1007/s00521-020-05193-y.
[45]
BAI C, WANG Y, ZHANG Y, et al. bnormal gray matter volume and functional connectivity patterns in social cognition-related brain regions of young children with autism spectrum disorder[J]. Autism Res, 2023, 16(6): 1124-1137. DOI: 10.1002/aur.2936.
[46]
ZHOU Y, ZHU Y Q, DU X Y, et al. Classification of brain functional network and gradient features in autism based on ensemble learning[J]. Chin J Magn Reson Imag, 2025, 16(7): 6-14. DOI: 10.12015/issn.1674-8034.2025.07.002.
[47]
WADHERA T. Multimodal kernel-based discriminant correlation analysis data-fusion approach: an automated autism spectrum disorder diagnostic system[J]. Phys Eng Sci Med, 2024, 47(1): 361-369. DOI: 10.1007/s13246-023-01350-4.
[48]
SELLAMUTHU S, ROSE S. Enhanced special needs assessment: a multimodal approach for autism prediction[J]. IEEE Access, 2024, 12: 121688-121699. DOI: 10.1109/ACCESS.2024.3453440.
[49]
ABDOLLAHINEJAD Y, KABIR M F. Enhancing early diagnosis of autism spectrum disorder using multimodal data and explainable AI models[C]. 2024 IEEE International Conference on Big Data (BigData), 2024: 8598-8600. DOI: 10.1109/BigData62323.2024.10825173.
[50]
XUE M, WANG L, SHEN J, et al. Deep low-rank multimodal fusion with inter-modal distribution difference constraint for ASD diagnosis[C]. 2023: 106-115. DOI: 10.1007/978-3-031-46317-4_10.
[51]
TANG J, CHEN J, HU M, et al. Diagnosis of autism spectrum disorder by dynamic functional connectivity using GNN-LSTM[J/OL]. Sensors (Basel), 2024, 25(1): 156 [2025-09-30]. https://doi.org/10.3390/s25010156. DOI: 10.3390/s25010156.

PREV Advances in magnetic resonance imaging of fetal brain development
NEXT Research progress of magnetic resonance diffusion kurtosis imaging on the microstructure of white matter in patients with major depressive disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn