Share:
Share this content in WeChat
X
Review
Research progress of abnormal gBOLD-CSF coupling in brain glymphatic system related central nervous system diseases
SU Jing  WANG Yi  AN Ningning  YANG Longfei  SU Qi  ZHANG Yutong  ZHANG Qing 

DOI:10.12015/issn.1674-8034.2026.01.022.


[Abstract] The glymphatic system (GS) is a waste clearance pathway in the brain, and its impaired function is closely associated with various central nervous system diseases. Resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed that low-frequency (< 0.1 Hz) global blood oxygen level-dependent (gBOLD) signals are coupled with cerebrospinal fluid (CSF) dynamics, a phenomenon that is related to GS function and provides a new direction for uncovering brain glymphatic dysfunction. This review summarizes the key aspects of the GS, the principles of gBOLD-CSF coupling, and its applications in central nervous system diseases. It aims to synthesize research on GS functional changes in a range of central nervous system disorders, and to clarify the value and prospects of abnormal gBOLD-CSF coupling for assessing disease severity and evaluating treatment efficacy. Meanwhile, this review identifies the limitations of current research and proposes directions for future studies.
[Keywords] central nervous system diseases;glymphatic system;cerebrospinal fluid;global resting-state functional magnetic resonance imaging signal;magnetic resonance imaging

SU Jing   WANG Yi   AN Ningning   YANG Longfei   SU Qi   ZHANG Yutong   ZHANG Qing*  

Department of Radiology, Zhongshan Hospital Affiliated to Dalian University, Dalian 116001, China

Corresponding author: ZHANG Q, E-mail: zhangqingsmile@163.com

Conflicts of interest   None.

Received  2025-10-28
Accepted  2025-12-10
DOI: 10.12015/issn.1674-8034.2026.01.022
DOI:10.12015/issn.1674-8034.2026.01.022.

[1]
ILIFF J J, WANG M, LIAO Y, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid b[J/OL]. Sci Transl Med, 2012, 4(147): 147ra111 [2025-10-19]. http://stm.sciencemag.org/. DOI: 10.1126/scitranslmed.3003748.
[2]
LIU G, LADRÓN-DE-GUEVARA A, IZHIMAN Y, et al. Measurements of cerebrospinal fluid production: a review of the limitations and advantages of current methodologies[J/OL]. Fluids Barriers CNS, 2022, 19(1): 101 [2025-10-19]. https://doi.org/10.1186/s12987-022-00382-4. DOI: 10.1186/s12987-022-00382-4.
[3]
DANTE P, PINAR S Ö, HENDRIK M, et al. Autonomic arousals contribute to brain fluid pulsations during sleep[J/OL]. Neuroimage, 2022, 249: 11888 [2025-10-19]. https://doi.org/10.1016/j.neuroimage.2022.118888. DOI: 10.1016/j.neuroimage.2022.118888.
[4]
HAN F, CHEN J, BELKIN-ROSEN A, et al. Reduced coupling between cerebrospinal fluid flow and global brain activity is linked to Alzheimer disease-related pathology[J/OL]. PLoS Biol, 2021, 19(6): e3001233 [2025-10-19]. https://doi.org/10.1371/journal.pbio.3001233. DOI: 10.1371/journal.pbio.3001233.
[5]
HAN F, BROWN G L, ZHU Y, et al. Decoupling of Global Brain Activity and Cerebrospinal Fluid Flow in Parkinson's Disease Cognitive Decline[J]. Mov Disord, 2021, 36(9): 2066-2076. DOI: 10.1002/mds.28643.
[6]
REHMAN M U, SEHAR N, RASOOL I, et al. Glymphatic pathway: An emerging perspective in the pathophysiology of neurodegenerative diseases[J/OL]. Int J Geriatr Psychiatry, 2024, 39(6): e6104 [2025-10-19]. https://doi.org/10.1002/gps.6104. DOI: 10.1002/gps.6104.
[7]
ILIFF J J, LEE H, YU M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI[J]. J Clin Invest, 2013, 123(3): 1299-1309. DOI: 10.1172/JCI67677.
[8]
TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases[J]. Jpn J Radiol, 2017, 35(4): 172-178. DOI: 10.1007/s11604-017-0617-z.
[9]
KIVINIEMI V, WANG X, KORHONEN V, et al. Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms?[J]. J Cereb Blood Flow Metab, 2016, 36(6): 1033-1045. DOI: 10.1177/0271678X15622047.
[10]
HO-CHING Y, BEN I, THOMAS M T, et al. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An fMRI study[J]. J Cereb Blood Flow Metab, 2022, 42(6): 1091-1103. DOI: 10.1177/0271678X221074639.
[11]
GONZALEZ-CASTILLO J, FERNANDEZ I S, HANDWERKER D A, et al. Ultra-slow fMRI fluctuations in the fourth ventricle as a marker of drowsiness[J/OL]. Neuroimage, 2022, 259: 119424 [2025-10-19]. https://doi.org/10.1016/j.neuroimage.2022.119424. DOI: 10.1016/j.neuroimage.2022.119424.
[12]
ZHAO W, RAO J, WANG R, et al. Test-retest reliability of coupling between cerebrospinal fluid flow and global brain activity after normal sleep and sleep deprivation[J/OL]. Neuroimage, 2025, 309: 121097 [2025-10-19]. https://doi.org/10.1016/j.neuroimage.2025.121097. DOI: 10.1016/j.neuroimage.2025.121097.
[13]
STEPHANIE D W, BEVERLY S, NINA E F, et al. Neural activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in humans[J/OL]. PLoS Biol, 2023, 21(3): e3002035 [2025-10-19]. https://doi.org/10.1371/journal.pbio.3002035. DOI: 10.1371/journal.pbio.3002035.
[14]
HETA H, VESA K, SEBASTIAN C H, et al. Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations[J]. J Neurosci, 2022, 42(12): 2503-2515. DOI: 10.1523/JNEUROSCI.0934-21.2022.
[15]
FULTZ N E, BONMASSAR G, SETSOMPOP K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep[J]. Science, 2019, 366(6465): 628-631. DOI: 10.1126/science.aax5440.
[16]
YAMENG G, FENG H, LUCAS E S, et al. An orderly sequence of autonomic and neural events at transient arousal changes[J/OL]. Neuroimage, 2022, 264: 119720 [2025-10-19]. http://creativecommons.org/licenses/by-nc-nd/4.0/. DOI: 10.1016/j.neuroimage.2022.119720.
[17]
LUCY Z, ALLEN T, ERIK B, et al. Physiology of Glymphatic Solute Transport and Waste Clearance from the Brain[J]. Physiology, 2022, 37(6): 349-362. DOI: 10.1152/physiol.00015.2022.
[18]
WANG Z, FEI X, LIU X, et al. REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex[J/OL]. Nat Commun, 2022, 13(1): 6896 [2025-10-19]. https://doi.org/10.1038/s41467-022-34720-9. DOI: 10.1038/s41467-022-34720-9.
[19]
BENSON J C, MADHAVAN A A, CUTSFORTH-GREGORY J K, et al. The Monro-Kellie Doctrine: A Review and Call for Revision[J]. AJNR Am J Neuroradiol, 2023, 44(1): 2-6. DOI: 10.3174/ajnr.A7721.
[20]
MESTRE H, HABLITZ L M, XAVIER A L, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J/OL]. eLife, 2018, 7: e40070 [2025-10-19]. https://doi.org/10.7554/eLife.40070. DOI: 10.7554/eLife.40070.
[21]
YANG J, CAO C, LIU J, et al. Dystrophin 71 deficiency causes impaired aquaporin-4 polarization contributing to glymphatic dysfunction and brain edema in cerebral ischemia[J/OL]. Neurobiol Dis, 2024, 199: 106586 [2025-10-19]. https://doi.org/10.1016/j.nbd.2024.106586. DOI: 10.1016/j.nbd.2024.106586.
[22]
GU Y, SAINBURG L E, KUANG S, et al. Brain Activity Fluctuations Propagate as Waves Traversing the Cortical Hierarchy[J]. Cereb Cortex, 2021, 31(9): 3986-4005. DOI: 10.1093/cercor/bhab064.
[23]
DICKSON D W. Neuropathology of Parkinson's Disease and Parkinsonism[J/OL]. Cold Spring Harb Perspect Med, 2025: a041610 [2025-10-19]. http://perspectivesinmedicine.cshlp.org/. DOI: 10.1101/cshperspect.a041610.
[24]
SI X, GUO T, WANG Z, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson's disease[J/OL]. NPJ Parkinsons Dis, 2022, 8(1): 54 [2025-10-19]. https://doi.org/10.1038/s41531-022-00316-9. DOI: 10.1038/s41531-022-00316-9.
[25]
XIE L, WISSE L E M, DAS S R, et al. Longitudinal atrophy in early Braak regions in preclinical Alzheimer's disease[J]. Hum Brain Mapp, 2020, 41(16): 4704-4717. DOI: 10.1002/hbm.25151.
[26]
WANG Z, SONG Z, ZHOU C, et al. Reduced coupling of global brain function and cerebrospinal fluid dynamics in Parkinson's disease[J]. Original Article, 2023, 43(8): 1328-1339. DOI: 10.1177/0271678X231164337.
[27]
CHEN K, LU L, ZHANG L, et al. Glymphatic Dysfunction Is Related to Comorbidity of Parkinson's Disease and Anxiety: A Multimodal MRI Study[J/OL]. Brain Behav, 2025, 15(9): e70918 [2025-10-19]. https://doi.org/10.1002/brb3.70918. DOI: 10.1002/brb3.70918.
[28]
CLIFFORD R J, SCOTT A J., THOMAS G B, et al. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup[J]. Alzheimers Dement, 2024, 20(8): 5451-5468. DOI: 10.1002/alz.13859.
[29]
PALMQVIST S, SCHÖLL M, STRANDBERG O, et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity[J/OL]. Nat Commun, 2017, 8(1): 1214 [2025-10-19]. https://www.nature.com/articles/s41467-017-01150-x. DOI: 10.1038/s41467-017-01150-x.
[30]
HAN F, LIU X, MAILMAN R B, et al. Resting-state global brain activity affects early β-amyloid accumulation in default mode network[J/OL]. Nat Commun, 2023, 14(1): 7788 [2025-10-19]. https://doi.org/10.1038/s41467-023-43627-y. DOI: 10.1038/s41467-023-43627-y.
[31]
SIMON M, WANG M X, ISMAIL O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice[J/OL]. Alzheimers Res Ther, 2022, 14(1): 59 [2025-10-19]. https://doi.org/10.1186/s13195-022-00999-5. DOI: 10.1186/s13195-022-00999-5.
[32]
SCARIONI M, GAMI-PATEL P, PEETERS C F W, et al. Psychiatric symptoms of frontotemporal dementia and subcortical (co-)pathology burden: new insights[J]. Brain, 2023, 146(1): 307-320. DOI: 10.1093/brain/awac043.
[33]
GIANNINI L A A, PETERSON C, OHM D, et al. Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology[J/OL]. Acta Neuropathol Commun, 2021, 9(1): 30 [2025-10-19]. https://doi.org/10.1186/s40478-021-01129-2. DOI: 10.1186/s40478-021-01129-2.
[34]
JIANG D, LIU L, KONG Y, et al. Regional Glymphatic Abnormality in Behavioral Variant Frontotemporal Dementia[J]. Ann Neurol, 2023, 94(3): 442-456. DOI: 10.1002/ana.26710.
[35]
RIFINO N, HERVÈ D, ACERBI F, et al. Diagnosis and management of adult Moyamoya angiopathy: An overview of guideline recommendations and identification of future research directions[J]. Int J Stroke, 2025, 20(5): 512-523. DOI: 10.1177/17474930241297031.
[36]
HARA S, KIKUTA J, TAKABAYASHI K, et al. Decreased diffusivity along the perivascular space and cerebral hemodynamic disturbance in adult moyamoya disease[J]. J Cereb Blood Flow Metab, 2024, 44(10): 1787-1800. DOI: 10.1177/0271678X241245492.
[37]
ZENG C, ZHAI Y, GE P, et al. Glymphatic Impairment Associated with Neurocognitive Dysfunction in Moyamoya Disease[J]. Transl Stroke Res, 2025, 16(3): 690-703. DOI: 10.1007/s12975-024-01250-z.
[38]
ZHU H, ZHU C, LIU T, et al. Alterations in the Glymphatic System and Association with Brain Structure and Cognitive Function in Moyamoya Disease[J]. Transl Stroke Res, 2025, 16(4): 1173-1184. DOI: 10.1007/s12975-024-01296-z.
[39]
WARDLAW J M, SMITH C, DICHGANS M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7): 684-696. DOI: 10.1016/S1474-4422(19)30079-1.
[40]
ANG P S, ZHANG D M, AZIZI S A, et al. The glymphatic system and cerebral small vessel disease[J/OL]. J Stroke Cerebrovasc Dis, 2024, 33(3): 107557 [2025-10-19]. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107557. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107557.
[41]
ZHANG Y, ZHANG R, WANG S, et al. Reduced coupling between the global blood-oxygen-level-dependent signal and cerebrospinal fluid inflow is associated with the severity of small vessel disease[J/OL]. Neuroimage Clin, 2022, 36: 103229 [2025-10-19]. https://doi.org/10.1016/j.nicl.2022.103229. DOI: 10.1016/j.nicl.2022.103229.
[42]
FENG X, JIA M, CAI M, et al. Central-peripheral neuroimmune dynamics in psychological stress and depression: insights from current research[J]. Mol Psychiatry, 2025, 30(10): 3178-3192. DOI: 10.1038/s41380-025-03085-y.
[43]
LI M, DING Y, OU Y, et al. Multimodal integration of homotopic connectivity and transcriptomic signatures in major depressive disorder with sleep disorder comorbidity[J/OL]. BMC Psychiatry, 2025, 25(1): 665 [2025-10-19]. https://doi.org/10.1186/s12888-025-07084-9. DOI: 10.1186/s12888-025-07084-9.
[44]
LEITNER C, DALLE PIAGGE F, TOMIC T, et al. Sleep alterations in major depressive disorder and insomnia disorder: A network meta-analysis of polysomnographic studies[J/OL]. Sleep Med Rev, 2025, 80: 102048 [2025-10-19]. https://doi.org/10.1016/j.smrv.2025.102048. DOI: 10.1016/j.smrv.2025.102048.
[45]
ZHANG Y, PENG B, CHEN S, et al. Reduced coupling between global signal and cerebrospinal fluid inflow in patients with depressive disorder: A resting state functional MRI study[J]. Journal of Affective Disorders, 2024, 354: 136-142. DOI: 10.1016/j.jad.2024.03.023.
[46]
LIU W, ZHOU B, LI G, et al. Enhanced diagnostics for generalized anxiety disorder: leveraging differential channel and functional connectivity features based on frontal EEG signals[J/OL]. Sci Rep, 2024, 14(1): 22789 [2025-10-19]. https://doi.org/10.1038/s41598-024-73615-1. DOI: 10.1038/s41598-024-73615-1.
[47]
LIU B Q, LIN B J, WANG M Y. Research progress of magnetic resonance imaging in generalized anxiety disorder[J]. Chin J Magn Reson Imaging, 2025, 16(3): 98-103. DOI: 10.12015/issn.1674-8034.2025.03.016.
[48]
HYSING M, HARVEY A G, SKRINDO KNUDSEN A K, et al. Mind at rest, mind at risk: A prospective population-based study of sleep and subsequent mental disorders[J/OL]. Sleep Med X, 2025, 9: 100138 [2025-10-19]. https://doi.org/10.1016/j.sleepx.2025.100138. DOI: 10.1016/j.sleepx.2025.100138.
[49]
QIAN R, WANG L, FAN S, et al. Reduced coupling between global signal and cerebrospinal fluid inflow in patients with generalized anxiety disorder: A resting state functional MRI study[J/OL]. J Affect Disord, 2025, 390: 119851 [2025-10-19]. https://doi.org/10.1016/j.jad.2025.119851. DOI: 10.1016/j.jad.2025.119851.
[50]
CHEN K, XU B, QIU S, et al. Inhibition of phosphodiesterase 4 attenuates aquaporin 4 expression and astrocyte swelling following cerebral ischemia/reperfusion injury[J]. Glia, 2024, 72(9): 1629-1645. DOI: 10.1002/glia.24572.
[51]
KIM J H, IM J G, PARK S H. Measurement of changes in cerebrospinal fluid pulsation after traumatic brain injury using echo-planar imaging-based functional MRI[J/OL]. NMR Biomed, 2024, 37(3): e5061 [2025-10-19]. https://doi.org/10.1002/nbm.5061. DOI: 10.1002/nbm.5061.
[52]
AMELIA H, BENJAMIN S, SANDY S, et al. Associations of Enlarged Perivascular Spaces With Brain Lesions, Brain Age, and Clinical Outcomes in Chronic Traumatic Brain Injury[J/OL]. Neurology, 2023, 101(1): e62-e73 [2025-10-19]. https://www.neurology.org/doi/10.1212/WNL.0000000000207370. DOI: 10.1212/WNL.0000000000207370.

PREV Research progress of magnetic resonance diffusion kurtosis imaging on the microstructure of white matter in patients with major depressive disorder
NEXT Advances in imaging research on the correlation between cerebral small vessel disease-related white matter hyperintensities and cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn