Share:
Share this content in WeChat
X
Review
Advances in imaging research on the correlation between cerebral small vessel disease-related white matter hyperintensities and cognitive impairment
YANG Jiayi  MAO Haixia  FANG Xiangming 

DOI:10.12015/issn.1674-8034.2026.01.023.


[Abstract] White matter hyperintensities (WMH) are a typical imaging hallmark of cerebral small vessel disease (CSVD). Early-stage WMH may reflect reversible injuries, such as interstitial fluid circulation disorders, whereas advanced WMH indicate permanent lesions like demyelination and axonal loss. CSVD-related WMH are closely correlated with the progression of cognitive impairment. This correlation is manifested not only in the impacts of total WMH burden and spatial distribution on cognitive function, but also in the significant association between WMH and abnormalities in brain microstructure and function. Therefore, WMH may serve as an important imaging mediator for CSVD-related cognitive impairment induced by brain microstructural and functional abnormalities. This review focuses on the pathophysiological mechanisms of CSVD-related WMH, their direct correlation with cognitive impairment, and recent advances in imaging research regarding their multiple associations with underlying brain microstructural and functional injuries of cognitive impairment. The aim is to deepen the understanding of the role and significance of WMH, a core imaging sign of CSVD, in the clinical assessment of CSVD-related cognitive impairment, and to provide objective evidence for further research, diagnosis, and treatment of this condition. Furthermore, this review identifies the limitations in the current research and proposes potential avenues for future investigation.
[Keywords] cerebral small vessel disease;white matter hyperintensities;cognitive impairment;magnetic resonance imaging;radiomics

YANG Jiayi   MAO Haixia   FANG Xiangming*  

Department of Radiology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China

Corresponding author: FANG X M, E-mail: drfxm@163.com

Conflicts of interest   None.

Received  2025-11-12
Accepted  2025-12-12
DOI: 10.12015/issn.1674-8034.2026.01.023
DOI:10.12015/issn.1674-8034.2026.01.023.

[1]
HU W L, YANG L, LI X T, et al. Chinese Expert Consensus on the Diagnosis and Treatment of Cerebral Small Vessel Disease 2021[J]. Chin J Stroke, 2021, 16(7): 716-726. DOI: 10.3969/j.issn.1673-5765.2021.07.013.
[2]
DUPRÉ N, DRIEU A, JOUTEL A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries[J/OL]. J Clin Invest, 2024, 134(10): e172841 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/38747292/. DOI: 10.1172/JCI172841.
[3]
MAHAMMEDI A, WANG L L, WILLIAMSON B J, et al. Small Vessel Disease, a Marker of Brain Health: What the Radiologist Needs to Know[J]. AJNR Am J Neuroradiol, 2022, 43(5): 650-660. DOI: 10.3174/ajnr.A7302.
[4]
PENG D. Clinical practice guideline for cognitive impairment of cerebral small vessel disease[J]. Aging Med (Milton), 2019, 2(2): 64-73. DOI: 10.1002/agm2.12073.
[5]
HUA M, MA A J, LIU Z Q, et al. Arteriolosclerosis CSVD: a common cause of dementia and stroke and its association with cognitive function and total MRI burden[J/OL]. Front Aging Neurosci, 2023, 15: 1163349 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/37520130/. DOI: 10.3389/fnagi.2023.1163349.
[6]
MARKUS H S, JOUTEL A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment[J]. Physiol Rev, 2025, 105(3): 1075-1171. DOI: 10.1152/physrev.00028.2024.
[7]
STRILCIUC S, GRAD D A, RADU C, et al. The economic burden of stroke: a systematic review of cost of illness studies[J]. J Med Life, 2021, 14(5): 606-619. DOI: 10.25122/jml-2021-0361.
[8]
ZHANG J, SONG S, ZHAO Y, et al. Economic burden of comorbid chronic conditions among survivors of stroke in China: 10-year longitudinal study[J/OL]. BMC Health Serv Res, 2021, 21(1): 978 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/34535138/. DOI: 10.1186/s12913-021-07010-1.
[9]
MARKUS H S, DE LEEUW F E. Cerebral small vessel disease: Recent advances and future directions[J]. Int J Stroke, 2023, 18(1): 4-14. DOI: 10.1177/17474930221144911.
[10]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/S1474-4422(23)00131-X.
[11]
CHEN W Q, XU J J, LU Y, et al. Neuroimaging Diagnostic Criteria and Standardized Definition of Terms for Small Vessel Disease in China-Expert Consensus from the Chinese Stroke Association[J]. Chin J Stroke, 2024, 19(4): 376-404. DOI: 10.3969/j.issn.1673-5765.2024.04.002.
[12]
CHEN Y, WANG X, GUAN L, et al. Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review[J/OL]. Biomolecules, 2021, 11(8): 1102 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/34439769/. DOI: 10.3390/biom11081102.
[13]
DEBETTE S, SCHILLING S, DUPERRON M G, et al. Clinical Significance of Magnetic Resonance Imaging Markers of Vascular Brain Injury: A Systematic Review and Meta-analysis[J]. JAMA Neurol, 2019,76(1): 81-94. DOI: 10.1001/jamaneurol.2018.3122.
[14]
LAHNA D, SCHWARTZ D L, WOLTJER R, et al. Venous Collagenosis as Pathogenesis of White Matter Hyperintensity[J]. Ann Neurol, 2022, 92(6): 992-1000. DOI: 10.1002/ana.26487.
[15]
BLAIR G W, THRIPPLETON M J, SHI Y, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease[J/OL]. Neurology, 2020, 94(21): e2258-e2269 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/32366534/. DOI: 10.1212/WNL.0000000000009483.
[16]
SMIRNOV M, DESTRIEUX C, MALDONADO I L. Cerebral white matter vasculature: still uncharted?[J]. Brain, 2021, 144(12): 3561-3575. DOI: 10.1093/brain/awab273.
[17]
WANG Y, LIU X, HU Y, et al. Impaired functional network properties contribute to white matter hyperintensity related cognitive decline in patients with cerebral small vessel disease[J/OL]. BMC Med Imaging, 2022, 22(1): 40 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/35264145/. DOI: 10.1186/s12880-022-00769-7.
[18]
ZHANG X, LIANG C, FENG M, et al. Aberrant brain structural-functional connectivity coupling associated with cognitive dysfunction in different cerebral small vessel disease burdens[J/OL]. CNS Neurosci Ther, 2024, 30(9): e70005 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/39228091/. DOI: 10.1111/cns.70005.
[19]
CHEN J X Y, VIPIN A, SANDHU G K, et al. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities[J/OL]. J Prev Alzheimers Dis, 2025, 12(2): 100029 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/39863325/. DOI: 10.1016/j.tjpad.2024.100029.
[20]
KERN K C, ZAGZOUG M S, GOTTESMAN R F, et al. Blood-brain barrier disruption and increased free water are associated with worse cognitive performance in patients with chronic cerebrovascular disease[J/OL]. Neuroimage Clin, 2024, 44: 103706 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/39551018/. DOI: 10.1016/j.nicl.2024.103706.
[21]
VAN DINTHER M, VOORTER P H M, ZHANG E, et al. The neurovascular unit and its correlation with cognitive performance in patients with cerebral small vessel disease: a canonical correlation analysis approach[J]. GeroScience, 2024, 46(5): 5061-5073. DOI: 10.1007/s11357-024-01235-8.
[22]
WANG L L, WILLIAMSON B J, ZHANG B, et al. Microstructural and microvascular features of white matter hyperintensities and their association with small vessel disease markers[J/OL]. Sci Rep, 2025, 15(1): 18567 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/40425687/. DOI: 10.1038/s41598-025-03885-w.
[23]
WU L, CHEN K, ZHANG Z, et al. The Relationship Between Glymphatic Function, White Matter Hyperintensity and Cognition: A Structural Equation Model MRI Study[J/OL]. CNS Neurosci Ther, 2025, 31(6): e70478 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/40538144/. DOI: 10.1111/cns.70478.
[24]
LI K, BIAN Y, XING Y, et al. Altered glymphatic function and cerebrovascular reactivity in white matter hyperintensities: Insights into cognitive impairment[J/OL]. Brain Res Bull, 2025, 231: 111552 [2505-11-12]. https://pubmed.ncbi.nlm.nih.gov/40967343/. DOI: 10.1016/j.brainresbull.2025.111552.
[25]
MENG F, YANG Y, JIN G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment[J/OL]. Front Neurol, 2022, 13: 865920 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/35873763/. DOI: 10.3389/fneur.2022.865920.
[26]
ALBER J, ALLADI S, BAE H J, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities[J/OL]. Alzheimers Dement (N Y), 2019, 5: 107-117 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/31011621/. DOI: 10.1016/j.trci.2019.02.001.
[27]
BOTZ J, LOHNER V, SCHIRMER M D. Spatial patterns of white matter hyperintensities: a systematic review[J/OL]. Front Aging Neurosci, 2023, 15: 1165324 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/37251801/. DOI: 10.3389/fnagi.2023.1165324.
[28]
ZHANG S, HU Y, YANG H, et al. Value of white matter hyperintensity volume and total white matter volume for evaluating cognitive impairment in patients with cerebral small-vessel disease[J/OL]. Front Aging Neurosci, 2023, 15: 1096808 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/37065461/. DOI: 10.3389/fnagi.2023.1096808.
[29]
MELAZZINI L, MACKAY C E, BORDIN V, et al. White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance[J/OL]. Neuroimage Clin, 2021, 30: 102616 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/33743476/. DOI: 10.1016/j.nicl.2021.102616.
[30]
SU C, YANG X, WEI S, et al. Association of Cerebral Small Vessel Disease With Gait and Balance Disorders[J/OL]. Front Aging Neurosci, 2022, 14: 834496 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/35875801/. DOI: 10.3389/fnagi.2022.834496.
[31]
HUANG W Q, LIN Q, TZENG C M. Leukoaraiosis: Epidemiology, imaging, risk factors, and management of age-related cerebral white matter hyperintensities[J]. J Stroke, 2024, 26(2): 131-163. DOI: 10.5853/jos.2023.02719.
[32]
ZHANG T, YANG S X, YAN Y D, et al. Research progress of the correlation between cerebral white matter hyperintensity and cognitive ability[J]. J Clin Neurol, 2024, 37(03): 226-230. DOI: 10.3969/j.issn.1004-1648.2024.03.021.
[33]
VOORTER P H M, STRINGER M S, VAN DINTHER M, et al. Heterogeneity and Penumbra of White Matter Hyperintensities in Small Vessel Diseases Determined by Quantitative MRI[J]. Stroke, 2024, 56(1): 128-137. DOI: 10.1161/STROKEAHA.124.047910.
[34]
XIE Y, XIE L, KANG F, et al. Association between white matter alterations and domain-specific cognitive impairment in cerebral small vessel disease: A meta-analysis of diffusion tensor imaging[J/OL]. Front Aging Neurosci, 2022, 14: 1019088 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/36483114/. DOI: 10.3389/fnagi.2022.1019088.
[35]
KASKIKALLIO A, KARRASCH M, KOIKKALAINEN J, et al. White Matter Hyperintensities and Cognitive Impairment in Healthy and Pathological Aging: A Quantified Brain MRI Study[J]. Dement Geriatr Cogn Disord, 2020, 48(5-6): 297-307. DOI: 10.1159/000506124.
[36]
BRUGULAT-SERRAT A, SALVADÓ G, SUDRE C H, et al. Patterns of white matter hyperintensities associated with cognition in middle-aged cognitively healthy individuals[J]. Brain Imaging Behav, 2020, 14(5): 2012-2023. DOI: 10.1007/s11682-019-00151-2.
[37]
CHEN H F, HUANG L L, LI H Y, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment[J]. CNS Neurosci Ther, 2020, 26(5): 576-588. DOI: 10.1111/cns.13283.
[38]
PETER J, MAYER I, KAMMER T, et al. The relationship between cholinergic system brain structure and function in healthy adults and patients with mild cognitive impairment[J/OL]. Sci Rep, 2021, 11(1): 16080 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/34373525/. DOI: 10.1038/s41598-021-95573-8.
[39]
VAN DEN BRINK H, DOUBAL F N, DUERING M. Advanced MRI in cerebral small vessel disease[J]. Int J Stroke, 2023, 18(1): 28-35. DOI: 10.1177/17474930221091879.
[40]
FENG W J, GU Y M, XIA X S, et al. Association of white matter hyperintensities with cognitive impairment[J/OL]. Magn Reson Imaging, 2025, 123: 110464 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/40744215/. DOI: 10.1016/j.mri.2025.110464.
[41]
VEDAEI F, SRINIVASAN D, PARKER D, et al. Spatial and signal features of white matter integrity and associations with clinical factors: A CARDIA brain MRI study[J/OL]. NeuroImage Clin, 2025, 46: 103768 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/40101673/. DOI: 10.1016/j.nicl.2025.103768.
[42]
WANG X, WANG Y, GAO D, et al. Characterizing the penumbras of white matter hyperintensities in patients with cerebral small vessel disease[J]. Jpn J Radiol, 2023, 41(9): 928-937. DOI: 10.1007/s11604-023-01419-w.
[43]
LIU Y, LIU D, LIU M, et al. The microstructural abnormalities of cingulum was related to patients with mild cognitive impairment: a diffusion kurtosis imaging study[J]. Neurol Sci, 2022, 44(1): 171-180. DOI: 10.1007/s10072-022-06408-x.
[44]
LIU D, MA X, LI X, et al. Correlation study between the microstructural abnormalities of medial prefrontal cortex and white matter hyperintensities with mild cognitive impairment patients: A diffusion kurtosis imaging study[J/OL]. Psychiatry Res Neuroimaging, 2025, 348: 111958 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/37160589/. DOI: 10.1016/j.pscychresns.2025.111958.
[45]
ANDICA C, KAMAGATA K, HATANO T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52 (6): 1620-1636. DOI: 10.1002/jmri.27019.
[46]
LI B, ZENG B, ZENG P, et al. Hippocampal-subfield macro- and microstructural changes in cerebral small vessel disease with mild cognitive impairment[J]. J Affect Disord, 2025, 384: 12-22. DOI: 10.1016/j.jad.2025.05.027.
[47]
WANG X, SHI Y, CHEN Y, et al. Blood-Brain Barrier Breakdown is a Sensitive Biomarker of Cognitive and Language Impairment in Patients with White Matter Hyperintensities[J]. Neurol Ther, 2023, 12(5): 1745-1758. DOI: 10.1007/s40120-023-00527-z
[48]
ZHANG R, HUANG P, WANG S, et al. Decreased Cerebral Blood Flow and Delayed Arterial Transit Are Independently Associated With White Matter Hyperintensity[J/OL]. Front Aging Neurosci, 2022, 14: 762745 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/35711906/. DOI: 10.3389/fnagi.2022.762745.
[49]
FENG W, LEI X, XU S, et al. Association between white matter hyperintensities and gray matter volume in cerebral small vessel disease insights from periventricular and deep white matter lesions[J/OL]. Front Neurol, 2025, 16: 1590997 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/40703777/. DOI: 10.3389/fneur.2025.1590997.
[50]
CAO S, ZHANG J, CHEN C, et al. Decline in executive function in patients with white matter hyperintensities from the static and dynamic perspectives of amplitude of low-frequency fluctuations[J]. J Neurosci Res, 2021, 99(11): 2793-2803. DOI: 10.1002/jnr.24956.
[51]
NI L, ZHANG B, YANG D, et al. Lower Cerebrovascular Reactivity Contributed to White Matter Hyperintensity-Related Cognitive Impairment: A Resting‐State Functional MRI Study[J]. J Magn Reson Imaging, 2020, 53(3): 703-711. DOI: 10.1002/jmri.27376.
[52]
WANG X, WANG C, MIAO P, et al. Reduced GABA concentration in patients with white matter hyperintensities[J/OL]. Front Neurosci, 2023, 17: 1320247 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/38156270/. DOI: 10.3389/fnins.2023.1320247.
[53]
SHI M G, FENG X M, ZHI H Y, et al. Machine learning-based radiomics in neurodegenerative and cerebrovascular disease[J/OL]. Med Comm, 2024, 5(11): e778 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/39473906/. DOI: 10.1002/mco2.778.
[54]
PHUAH C L, CHEN Y, STRAIN J F, et al. Association of Data-Driven White Matter Hyperintensity Spatial Signatures With Distinct Cerebral Small Vessel Disease Etiologies[J/OL]. Neurology, 2022, 99(23): e2535-e2547 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/36123127/. DOI: 10.1212/wnl.0000000000201186.
[55]
SHU Z, XU Y, SHAO Y, et al. Radiomics from magnetic resonance imaging may be used to predict the progression of white matter hyperintensities and identify associated risk factors[J]. Eur Radiol, 2020, 30(6): 3046-3058. DOI: 10.1007/s00330-020-06676-1.
[56]
BRETZNER M, BONKHOFF A K, SCHIRMER M D, et al. MRI Radiomic Signature of White Matter Hyperintensities Is Associated With Clinical Phenotypes[J/OL]. Front Neurosci, 2021,15: 691244 [2025-11-12]. https://pubmed.ncbi.nlm.nih.gov/34321995/. DOI: 10.3389/fnins.2021.691244.
[57]
HUANG L, LI Z, ZHU X, et al. Deep adaptive learning predicts and diagnoses CSVD-related cognitive decline using radiomics from T2-FLAIR: a multi-centre study[J/OL]. NPJ Dig Med, 2025, 8(1): 444 [2025-12-4]. https://pubmed.ncbi.nlm.nih.gov/40664728/. DOI: 10.1038/s41746-025-01813-w.

PREV Research progress of abnormal gBOLD-CSF coupling in brain glymphatic system related central nervous system diseases
NEXT Research progress on magnetic resonance imaging of memory decline caused by cerebral small vessel disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn