Share:
Share this content in WeChat
X
Review
Research progress on magnetic resonance imaging of memory decline caused by cerebral small vessel disease
JIANG Yuxing  CHEN Li 

DOI:10.12015/issn.1674-8034.2026.01.024.


[Abstract] Cerebral small vessel disease (CSVD) is one of the leading causes of vascular cognitive impairment (VCI) and dementia, in which memory impairment represents a core clinical manifestation. With the widespread application of high-resolution multimodal magnetic resonance imaging (MRI), researchers are now able to more precisely elucidate the neural mechanisms by which CSVD lesions involve key memory-related regions such as the hippocampus, medial temporal lobe, and thalamus, thereby leading to memory dysfunction. While research in this area has progressed rapidly, the understanding of its specific mechanisms remains controversial, and the translation of imaging biomarkers into clinical practice remains immature. Therefore, it is necessary to conduct a systematic review and synthesis of the current evidence. This article summarizes recent neuroimaging studies on CSVD-related memory decline, outlining the pathophysiological mechanisms through which CSVD affects memory function and the clinical value of various imaging biomarkers. At the same time, it highlights the limitations of current mechanistic research and the challenges faced in translating imaging biomarkers into clinical practice, and proposes perspectives for future research. The aim of this review is to systematically collate the imaging evidence for memory impairment in CSVD, thereby providing an imaging basis for early diagnosis, precision intervention, and treatment response evaluation, and ultimately offering useful references for clinical practice.
[Keywords] neuroimaging;cerebral small vessel disease;memory impairment;magnetic resonance imaging;functional magnetic resonance image

JIANG Yuxing   CHEN Li*  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

Corresponding author: CHEN L, E-mail: chenliidea@sina.com

Conflicts of interest   None.

Received  2025-10-19
Accepted  2025-12-25
DOI: 10.12015/issn.1674-8034.2026.01.024
DOI:10.12015/issn.1674-8034.2026.01.024.

[1]
DUERING M, BIESSELS G J, BRODTMANN A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. DOI: 10.1016/S1474-4422(23)00131-X.
[2]
CHOJDAK-ŁUKASIEWICZ J, DZIADKOWIAK E, ZIMNY A, et al. Cerebral small vessel disease: a review[J]. Adv Clin Exp Med, 2021, 30(3): 349-356. DOI: 10.17219/acem/131216.
[3]
BHAT A, BISWAS A, DAS G, et al. Behavioral variations among vascular cognitive impairment subtypes - A comparative study[J]. Appl Neuropsychol Adult, 2023, 30(4): 439-446. DOI: 10.1080/23279095.2021.1954002.
[4]
WANG J X, LIANG X, LU J M, et al. Cortical and subcortical gray matter abnormalities in mild cognitive impairment[J/OL]. Neuroscience, 2024, 557: 81-88 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/39067683/. DOI: 10.1016/j.neuroscience.2024.07.036.
[5]
LEE S, LEE S, PARK I, et al. Associations between cortical iron accumulation and memory in patients with amnestic mild cognitive impairment and in cognitively normal individuals[J/OL]. Brain Behav, 2025, 15(5): e70521 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40384339/. DOI: 10.1002/brb3.70521.
[6]
VIKNER T, GARPEBRING A, BJÖRNFOT C, et al. Blood-brain barrier integrity is linked to cognitive function, but not to cerebral arterial pulsatility, among elderly[J/OL]. Sci Rep, 2024, 14(1): 15338 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38961135/. DOI: 10.1038/s41598-024-65944-y.
[7]
WANG W W, HUANG J, CHENG R T, et al. Concurrent brain structural and functional alterations related to cognition in patients with cerebral small vessel disease[J]. Neuroradiology, 2025, 67(4): 833-844. DOI: 10.1007/s00234-025-03557-6.
[8]
CHENG Z Y, YANG L F, LI J, et al. Cognitive impairment and amygdala subregion volumes in elderly with cerebral small vessel disease: a large prospective cohort study[J/OL]. Neurobiol Dis, 2024, 202: 106716 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/39490683/. DOI: 10.1016/j.nbd.2024.106716.
[9]
PAUSE B M, ZLOMUZICA A, KINUGAWA K, et al. Perspectives on episodic-like and episodic memory[J/OL]. Front Behav Neurosci, 2013, 7: 33 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/23616754/. DOI: 10.3389/fnbeh.2013.00033.
[10]
FLEISCHMAN D A, ARFANAKIS K, LEURGANS S E, et al. Cerebral arteriolosclerosis, lacunar infarcts, and cognition in older Black adults[J]. Alzheimers Dement, 2024, 20(8): 5375-5384. DOI: 10.1002/alz.13917.
[11]
CHARISIS S, RASHID T, DINTICA C, et al. Assessing the global impact of brain small vessel disease on cognition: the multi-ethnic study of atherosclerosis[J/OL]. Alzheimers Dement, 2025, 21(6): e70326 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40465677/. DOI: 10.1002/alz.70326.
[12]
METOKI A, BROOKES R L, ZEESTRATEN E, et al. Mnemonic function in small vessel disease and associations with white matter tract microstructure[J/OL]. Neuropsychologia, 2017, 104: 1-7 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/28750873/. DOI: 10.1016/j.neuropsychologia.2017.07.027.
[13]
KERKHOFS D, WONG S M, ZHANG E, et al. Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study[J]. Geroscience, 2021, 43(4): 1643-1652. DOI: 10.1007/s11357-021-00399-x.
[14]
WANG J J, CHENG L, MO Y J, et al. Unraveling heterogeneous mechanisms of cerebral small vessel disease: a whole-brain vessel wall imaging study[J/OL]. Eur J Radiol, 2026, 194: 112517 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/41264983/. DOI: 10.1016/j.ejrad.2025.112517.
[15]
HUANG J, CHENG R T, LIU X S, et al. Unraveling the link: white matter damage, gray matter atrophy and memory impairment in patients with subcortical ischemic vascular disease[J/OL]. Front Neurosci, 2024, 18: 1355207 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38362024/. DOI: 10.3389/fnins.2024.1355207.
[16]
JIA X Q, LI Y Y, YING Y Q, et al. Effect of corticosubcortical iron deposition on dysfunction in CADASIL is mediated by white matter microstructural damage[J/OL]. Neuroimage Clin, 2023, 39: 103485 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/37542975/. DOI: 10.1016/j.nicl.2023.103485.
[17]
MARKUS H S, JOUTEL A. The pathogenesis of cerebral small vessel disease and vascular cognitive impairment[J]. Physiol Rev, 2025, 105(3): 1075-1171. DOI: 10.1152/physrev.00028.2024.
[18]
MAO H X, XU M, WANG H, et al. Transcriptional patterns of brain structural abnormalities in CSVD-related cognitive impairment[J/OL]. Front Aging Neurosci, 2024, 16: 1503806 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/39679256/. DOI: 10.3389/fnagi.2024.1503806.
[19]
SEGUIN C, SPORNS O, ZALESKY A. Brain network communication: concepts, models and applications[J]. Nat Rev Neurosci, 2023, 24(9): 557-574. DOI: 10.1038/s41583-023-00718-5.
[20]
FAZLOLLAHI A, LEE S, COLEMAN F, et al. Increased resolution of structural MRI at 3T improves estimation of regional cortical degeneration in individual dementia patients using surface thickness maps[J]. J Alzheimers Dis, 2023, 95(3): 1253-1262. DOI: 10.3233/JAD-230030.
[21]
FREIRE I S, LOPES T S, AFONSO S G, et al. From images to insights: a neuroradiologist's practical guide on white matter fiber tract anatomy and DTI patterns for pre-surgical planning[J]. Neuroradiology, 2024, 66(8): 1251-1265. DOI: 10.1007/s00234-024-03362-7.
[22]
BANERJEE G, JANG H, KIM H J, et al. Total MRI small vessel disease burden correlates with cognitive performance, cortical atrophy, and network measures in a memory clinic population[J]. J Alzheimers Dis, 2018, 63(4): 1485-1497. DOI: 10.3233/JAD-170943.
[23]
FENG M M, WEN H W, XIN H T, et al. Decreased local specialization of brain structural networks associated with cognitive dysfuntion revealed by probabilistic diffusion tractography for different cerebral small vessel disease burdens[J]. Mol Neurobiol, 2024, 61(1): 326-339. DOI: 10.1007/s12035-023-03597-0.
[24]
HE M, LI Y, ZHOU L J, et al. Relationships between memory impairments and hippocampal structure in patients with subcortical ischemic vascular disease[J/OL]. Front Aging Neurosci, 2022, 14: 823535 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/35517055/. DOI: 10.3389/fnagi.2022.823535.
[25]
BOOKHEIMER T H, GANAPATHI A S, IQBAL F, et al. Beyond the hippocampus: Amygdala and memory functioning in older adults[J/OL]. Behav Brain Res, 2024, 471: 115112 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38871129/. DOI: 10.1016/j.bbr.2024.115112.
[26]
ÇAVUŞOĞLU B, HÜNERLI D, EMEK SAVAŞ D D, et al. Patterns of longitudinal subcortical atrophy over one year in amnestic mild cognitive impairment and its impact on cognitive performance: a preliminary study[J]. Turk J Med Sci, 2024, 54(3): 588-597. DOI: 10.55730/1300-0144.5826.
[27]
JIMÉNEZ-BALADO J, CORLIER F, HABECK C, et al. Effects of white matter hyperintensities distribution and clustering on late-life cognitive impairment[J/OL]. Sci Rep, 2022, 12(1): 1955 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/35121804/. DOI: 10.1038/s41598-022-06019-8.
[28]
YAN W, TANG S W, CHEN L, et al. The thalamic covariance network is associated with cognitive deficits in patients with cerebral small vascular disease[J]. Ann Clin Transl Neurol, 2024, 11(5): 1148-1159. DOI: 10.1002/acn3.52030.
[29]
QING Z, CHEN F, LU J M, et al. Causal structural covariance network revealing atrophy progression in Alzheimer's disease continuum[J]. Hum Brain Mapp, 2021, 42(12): 3950-3962. DOI: 10.1002/hbm.25531.
[30]
MONGAY-OCHOA N, GONZALEZ-ESCAMILLA G, FLEISCHER V, et al. Structural covariance analysis for neurodegenerative and neuroinflammatory brain disorders[J]. Brain, 2025, 148(9): 3072-3084. DOI: 10.1093/brain/awaf151.
[31]
ZHOU L J, HE M, LI Y J, et al. Relationships of white matter fiber bundles and cognitive function in subcortical ischemic vascular disease[J]. Chin J Med Imag Technol, 2023, 39(3): 331-335. DOI: 10.13929/j.issn.1003-3289.2023.03.003.
[32]
ZENG W Y, CHEN Y J, ZHU Z B, et al. Severity of white matter hyperintensities: Lesion patterns, cognition, and microstructural changes[J]. J Cereb Blood Flow Metab, 2020, 40(12): 2454-2463. DOI: 10.1177/0271678X19893600.
[33]
BUSBY N, WILMSKOETTER J, NEWMAN-NORLUND R, et al. Damage to white matter networks resulting from small vessel disease and the effects on cognitive function[J/OL]. Sci Rep, 2025, 15(1): 27736 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40731161/. DOI: 10.1038/s41598-025-13813-7.
[34]
TAGHVAEI M, MECHANIC-HAMILTON D J, SADAGHIANI S, et al. Impact of white matter hyperintensities on structural connectivity and cognition in cognitively intact ADNI participants[J/OL]. Neurobiol Aging, 2024, 135: 79-90 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38262221/. DOI: 10.1016/j.neurobiolaging.2023.10.012.
[35]
FJELL A M, SNEVE M H, AMLIEN I K, et al. Stable hippocampal correlates of high episodic memory function across adulthood[J/OL]. Sci Rep, 2025, 15(1): 8816 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40087328/. DOI: 10.1038/s41598-025-92278-0.
[36]
CHU C Y, LI W, SHI W Y, et al. Co-representation of functional brain networks is shaped by cortical myeloarchitecture and reveals individual behavioral ability[J/OL]. J Neurosci, 2024, 44(13): e0856232024 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38290847/. DOI: 10.1523/JNEUROSCI.0856-23.2024.
[37]
AMEMIYA S, TAKAO H, ABE O. Resting-state fMRI: emerging concepts for future clinical application[J]. J Magn Reson Imaging, 2024, 59(4): 1135-1148. DOI: 10.1002/jmri.28894.
[38]
ELORETTE C, FUJIMOTO A, STOLL F M, et al. The neural basis of resting-state fMRI functional connectivity in Fronto-limbic circuits revealed by chemogenetic manipulation[J/OL]. Nat Commun, 2024, 15(1): 4669 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38821963/. DOI: 10.1038/s41467-024-49140-0.
[39]
SUN L L, ZHAO T D, LIANG X Y, et al. Human lifespan changes in the brain's functional connectome[J]. Nat Neurosci, 2025, 28(4): 891-901. DOI: 10.1038/s41593-025-01907-4.
[40]
WU G W, CUI Z X, WANG X Y, et al. Unveiling the core functional networks of cognition: an ontology-guided machine learning approach[J/OL]. bioRxiv, 2024 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/38617291/. DOI: 10.1101/2024.04.02.587855.
[41]
YANG D, LI J N, KE Z H, et al. Subsystem mechanisms of default mode network underlying white matter hyperintensity-related cognitive impairment[J]. Hum Brain Mapp, 2023, 44(6): 2365-2379. DOI: 10.1002/hbm.26215.
[42]
JAYWANT A, DUNLOP K, VICTORIA L W, et al. Estimated regional white matter hyperintensity burden, resting state functional connectivity, and cognitive functions in older adults[J]. Am J Geriatr Psychiatry, 2022, 30(3): 269-280. DOI: 10.1016/j.jagp.2021.07.015.
[43]
HUANG C J, ZHOU X, REN M M, et al. Altered dynamic functional network connectivity and topological organization variance in patients with white matter hyperintensities[J]. J Neurosci Res, 2023, 101(11): 1711-1727. DOI: 10.1002/jnr.25230.
[44]
CHEN C, WANG X J, CAO S S, et al. Thalamocortical functional connectivity in patients with white matter hyperintensities[J/OL]. Front Aging Neurosci, 2021, 13: 632237 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/33815090/. DOI: 10.3389/fnagi.2021.632237.
[45]
ZHENG Y T, TU H, LI D N, et al. Amplitude of brain low-frequency fluctuation and functional connectivity changes based on fMRI study in first-episode major depressive disorder[J/OL]. Clin Neurol Neurosurg, 2025, 258: 109157 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40975022/. DOI: 10.1016/j.clineuro.2025.109157.
[46]
SONG J R, LEI T, LI Y J, et al. Dynamic alterations in the amplitude of low-frequency fluctuation in patients with cerebral small vessel disease[J/OL]. Front Mol Neurosci, 2023, 16: 1200756 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/37808469/. DOI: 10.3389/fnmol.2023.1200756.
[47]
ZHANG X L, WANG Z G, ZHENG D R, et al. Aberrant spontaneous static and dynamic amplitude of low-frequency fluctuations in cerebral small vessel disease with or without mild cognitive impairment[J/OL]. Brain Behav, 2023, 13(12): e3279 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/37815202/. DOI: 10.1002/brb3.3279.
[48]
CAI L N, YUE J H, CAO D N, et al. Structural and functional activities of brain in patients with vascular cognitive impairment: a case-controlled magnetic resonance imaging study[J/OL]. Medicine, 2023, 102(15): e33534 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/37058059/. DOI: 10.1097/MD.0000000000033534.
[49]
MU R H, YANG P, QIN X Y, et al. Aberrant baseline brain activity and disrupted functional connectivity in patients with vascular cognitive impairment due to cerebral small vessel disease[J/OL]. Front Neurol, 2024, 15: 1421283 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/39022734/. DOI: 10.3389/fneur.2024.1421283.
[50]
CHEN W S, XIE G J, XU C X, et al. The relationship between regional homogeneity in resting-state functional magnetic resonance imaging and cognitive function in depressive disorders with migraine[J/OL]. Sci Rep, 2025, 15(1): 11810 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40189646/. DOI: 10.1038/s41598-025-96850-6.
[51]
WANG W W, HUANG J, CHENG R T, et al. A study on differences of regional homogeneity on brain function between cerebral small vessel disease patients with and without cognitive impairment[J]. Chin J Magn Reson Imag, 2025, 16(6): 48-54. DOI: 10.12015/issn.1674-8034.2025.06.007.
[52]
JIN J, MA J, WU J J, et al. Neural correlates and adaptive mechanisms in vascular cognitive impairment: exploration of a structure-function coupling network[J/OL]. CNS Neurosci Ther, 2025, 31(3): e70205 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40059066/. DOI: 10.1111/cns.70205.
[53]
VACCARINO F, QUATTROCCHI C C, PARILLO M. Susceptibility-weighted imaging (SWI): technical aspects and applications in brain MRI for neurodegenerative disorders[J/OL]. Bioengineering, 2025, 12(5): 473 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/40428092/. DOI: 10.3390/bioengineering12050473.
[54]
CHEN J X Y, VIPIN A, SANDHU G K, et al. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities[J/OL]. J Prev Alzheimers Dis, 2025, 12(2): 100029 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/39863325/. DOI: 10.1016/j.tjpad.2024.100029.
[55]
HAN X, WANG Y, CHEN Y W, et al. Predicting white-matter hyperintensity progression and cognitive decline in patients with cerebral small-vessel disease: a magnetic resonance-based habitat analysis[J]. Quant Imaging Med Surg, 2024, 14(9): 6621-6634. DOI: 10.21037/qims-24-238.
[56]
TASO M, ALSOP D C. Arterial spin labeling perfusion imaging[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 63-72. DOI: 10.1016/j.mric.2023.08.005.
[57]
ZHANG X Q, LIU S R, HOU B, et al. Cerebral small vessel disease score associated with brain hypoperfusion predicts cognitive decline: a longitudinal study[J/OL]. BMC Med Imaging, 2025, 25(1): 463 [2025-10-18]. https://pubmed.ncbi.nlm.nih.gov/41233768/. DOI: 10.1186/s12880-025-01967-9.
[58]
VAN DINTHER M, HOOGHIEMSTRA A M, BRON E E, et al. Lower cerebral blood flow predicts cognitive decline in patients with vascular cognitive impairment[J]. Alzheimers Dement, 2024, 20(1): 136-144. DOI: 10.1002/alz.13408.
[59]
LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) MRI[J]. Magn Reson Imaging Clin N Am, 2024, 32(1): 47-61. DOI: 10.1016/j.mric.2023.09.001.

PREV Advances in imaging research on the correlation between cerebral small vessel disease-related white matter hyperintensities and cognitive impairment
NEXT Advances in the application of diffusion tensor imaging combined with artificial intelligence in cerebral small vessel disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn