Share:
Share this content in WeChat
X
Review
Research progress in predicting axillary lymph node metastasis in breast cancer using dynamic contrast-enhanced magnetic resonance imaging-based radiomics
WANG Guoyu  ZHANG Hui  LI Yi 

DOI:10.12015/issn.1674-8034.2026.01.029.


[Abstract] Breast cancer is a leading cause of cancer-related death among women worldwide, and the presence of axillary lymph node metastasis (ALNM) is a critical determinant of both patient prognosis and therapeutic strategy. Invasive diagnostic methods like sentinel lymph node biopsy (SLNB) carry risks of complications and false-negative results, creating a pressing clinical need for developing accurate, non-invasive preoperative assessment tools. Radiomics provides a novel technical approach for decoding tumor heterogeneity and predicting ALNM by high-throughput extraction and analysis of medical imaging features. Among these, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics has become a research focus in predicting ALNM in breast cancer and demonstrates promising application potential. However, there remains a lack of systematic reviews in this field, which has to some extent constrained the standardized development of non-invasive assessment techniques for ALN in breast cancer and their translation into clinical practice. This article systematically outlines the three developmental stages of DCE-MRI radiomics in predicting ALNM (feasibility validation of models, exploration of the value of the peritumoral region, and construction of multiparameter fusion models) while also providing an in-depth analysis of the standardization challenges faced by this field and proposing future research directions. The aim is to offer evidence-based support and clinical references for researchers and radiologists, with the goal of enhancing the precision of individualized diagnosis and treatment for breast cancer patients.
[Keywords] breast cancer;dynamic contrast-enhanced magnetic resonance imaging;radiomics;axillary lymph nodes;lymphatic metastasis

WANG Guoyu1, 2   ZHANG Hui2*   LI Yi1, 2  

1 Graduate School, Hebei North University, Zhangjiakou 075000, China

2 Department of Radiology, Hebei General Hospital, Shijiazhuang 050051, China

Corresponding author: ZHANG H, E-mail: wszzzhui@163.com

Conflicts of interest   None.

Received  2025-10-15
Accepted  2026-01-04
DOI: 10.12015/issn.1674-8034.2026.01.029
DOI:10.12015/issn.1674-8034.2026.01.029.

[1]
TAUBER N, AMANN N, DANNEHL D, et al. Therapy of early breast cancer: current status and perspectives[J]. Arch Gynecol Obstet, 2025, 312(2): 311-328. DOI: 10.1007/s00404-025-08028-0.
[2]
COSTA NUNES G G DA, DE FREITAS L M, MONTE N, et al. Genomic variants and worldwide epidemiology of breast cancer: a genome-wide association studies correlation analysis[J/OL]. Genes, 2024, 15(2): 145 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/38397135/. DOI: 10.3390/genes15020145.
[3]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[4]
KIM J, HARPER A, MCCORMACK V, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries[J]. Nat Med, 2025, 31(4): 1154-1162. DOI: 10.1038/s41591-025-03502-3.
[5]
WANG S J, ZHANG H, WANG X, et al. Development and validation of a nomogram for axillary lymph node metastasis risk in breast cancer[J]. J Cancer, 2024, 15(18): 6122-6134. DOI: 10.7150/jca.100651.
[6]
LIU J, SUN D, CHEN L L, et al. Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2019, 9: 980 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/31632912/. DOI: 10.3389/fonc.2019.00980.
[7]
WEN S S, LIANG Y R, KONG X L, et al. Application of preoperative computed tomographic lymphography for precise sentinel lymph node biopsy in breast cancer patients[J/OL]. BMC Surg, 2021, 21(1): 187 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/33836721/. DOI: 10.1186/s12893-021-01190-7.
[8]
TÜRKEŞ F, DERE Ö, DINÇ F, et al. The efficacy of MRI-based ADC measurements in detecting axillary lymph node metastasis: evaluation of a prospective study[J]. Curr Oncol, 2024, 31(11): 6598-6607. DOI: 10.3390/curroncol31110487.
[9]
LIU Y X, WU Y F, XIA Q, et al. An explainable predictive machine learning model for axillary lymph node metastasis in breast cancer based on multimodal data: a retrospective single-center study[J/OL]. J Transl Med, 2025, 23(1): 892 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/40790590/. DOI: 10.1186/s12967-025-06686-x.
[10]
MENG Q Z, LI S A, SUN G. The role and research progress of MRI in breast cancer imaging[J]. J Med Imag, 2024, 34(11): 148-151. DOI: 10.20258/j.cnki.1006-9011.2024.11.034.
[11]
ZHANG X D, LIU M H, REN W Q, et al. Predicting of axillary lymph node metastasis in invasive breast cancer using multiparametric MRI dataset based on CNN model[J/OL]. Front Oncol, 2022, 12: 1069733 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/36561533/. DOI: 10.3389/fonc.2022.1069733.
[12]
HORVAT N, PAPANIKOLAOU N, KOH D M. Radiomics beyond the hype: a critical evaluation toward oncologic clinical use[J/OL]. Radiol Artif Intell, 2024, 6(4): e230437 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/38717290/. DOI: 10.1148/ryai.230437.
[13]
YANG H, WANG W X, CHENG Z Y, et al. Radiomic machine learning in invasive ductal breast cancer: prediction of ki-67 expression level based on radiomics of DCE-MRI[J/OL]. Technol Cancer Res Treat, 2024, 23: 15330338241288751 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/39431304/. DOI: 10.1177/15330338241288751.
[14]
QIAN J F, ZHU D L, ZHANG X X, et al. Diagnostic value of radiomics for axillary lymph node metastasis in breast cancer: a Meta-analysis[J]. Chin J Magn Reson Imag, 2025, 16(3): 44-50. DOI: 10.12015/issn.1674-8034.2025.03.007.
[15]
LI T T, XUE J P, SU L L. Prediction of axillary lymph node metastasis by shear wave elastography and conventional ultrasound features of breast cancer and model establishment[J]. J Clin Med Pract, 2023, 27(5): 11-15. DOI: 10.7619/jcmp.20221769.
[16]
LI Y, CHEN K, JIN L Q, et al. Development and validation of an (18)F-FDG PET/CT radiomic nomogram for predicting axillary lymph-node status after neoadjuvant chemotherapy for breast cancer: a multicenter study[J]. Ann Nucl Med, 2025, 39(12): 1326-1336. DOI: 10.1007/s12149-025-02099-4.
[17]
LI Y, HAN D, SHEN C. Prediction of the axillary lymph-node metastatic burden of breast cancer by (18)F-FDG PET/CT-based radiomics[J/OL]. BMC Cancer, 2024, 24(1): 704 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/38849770/. DOI: 10.1186/s12885-024-12476-3.
[18]
CHEN M M, WANG C, LI Z Y, et al. Overview and progress of research methods of breast cancer lymph nodes in MRI imaging[J]. J Clin Radiol, 2025, 44(11): 2211-2216. DOI: 10.3969/j.issn.1001-9324.2025.11.033.
[19]
LIN J L, CHEN J X, LOU J J, et al. Predictive value of preoperative multiregional multiparametric breast MRI radiomics for N2-3 stage axillary lymph nodes[J]. J Nanjing Medicial Univ, 2025, 45(2): 185-195. DOI: 10.7655/NYDXBNSN241100.
[20]
HARAGUCHI T, KOBAYASHI Y, HIRAHARA D, et al. Radiomics model of diffusion-weighted whole-body imaging with background signal suppression (DWIBS) for predicting axillary lymph node status in breast cancer[J]. J Xray Sci Technol, 2023, 31(3): 627-640. DOI: 10.3233/XST-230009.
[21]
DONG F, LI J, WANG J B, et al. Diagnostic performance of DCE-MRI radiomics in predicting axillary lymph node metastasis in breast cancer patients: a meta-analysis[J/OL]. PLoS One, 2024, 19(12): e0314653 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/39625963/. DOI: 10.1371/journal.pone.0314653.
[22]
ZHANG C C, ZHONG M Z, LIANG Z P, et al. MRI-based radiomic and machine learning for prediction of lymphovascular invasion status in breast cancer[J/OL]. BMC Med Imaging, 2024, 24(1): 322 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/39604872/. DOI: 10.1186/s12880-024-01501-3.
[23]
XIA X D, DUAN C Z, LI M, et al. Prediction of axillary lymph node metastasis in breast cancer based on radiomics nomogram of MRI[J]. Chin J Magn Reson Imag, 2022, 13(1): 118-122. DOI: 10.12015/issn.1674-8034.2022.01.024.
[24]
ZHANG D, ZHOU W, LU W W, et al. Ultrasound-based deep learning radiomics for enhanced axillary lymph node metastasis assessment: a multicenter study[J/OL]. Oncologist, 2025, 30(5): oyaf090 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/40349137/. DOI: 10.1093/oncolo/oyaf090.
[25]
NASIR F, RAHMAN S, NASIR N. Breast cancer detection using convolutional neural networks: a deep learning-based approach[J/OL]. Cureus, 2025, 17(5): e83421 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/40322605/. DOI: 10.7759/cureus.83421.
[26]
WANG Y X, SHANG Y Y, GUO Y X, et al. Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer[J/OL]. Front Oncol, 2024, 14: 1357145 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/38567148/. DOI: 10.3389/fonc.2024.1357145.
[27]
LI X H, LU Z D, DING H, et al. Breast MRI-based imaging radiomic model can effectively predict sentinel lymph node metastasis in breast cancer prior to surgery[J]. J Mol Imag, 2024, 47(1): 57-63. DOI: 10.12122/j.issn.1674-4500.2024.01.11.
[28]
ZHAO L, BAI J, WANG L Y, et al. The value of dynamic contrast-enhanced MRI in the diagnosis of early breast cancer[J]. J Med Imag, 2024, 34(12): 171-173. DOI: 10.20258/j.cnki.1006-9011.2024.12.042.
[29]
XIE F Y, QIU X H, LIU Y C, et al. Value of 3.0 T dynamic contrast-enhanced MRI of breast combined with mammography in the differential diagnosis of benign and malignant small breast nodules with diameter≤2 cm[J]. Chin J Magn Reson Imag, 2021, 12(12): 71-74. DOI: 10.12015/issn.1674-8034.2021.12.014.
[30]
LUO H B, LIU Y Y, QING H M, et al. Preoperative diagnosis of metastatic axillary lymph nodes in breast cancer by their radiomic features based on pharmacokinetic modeling dynamic contrast-enhanced MRI[J]. J Clin Radiol, 2021, 40(3): 442-447. DOI: 10.13437/j.cnki.jcr.2021.03.008.
[31]
HONG M P, FAN S J, XU Z Y, et al. MRI radiomics and biological correlations for predicting axillary lymph node burden in early-stage breast cancer[J/OL]. J Transl Med, 2024, 22(1): 826 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/39243024/. DOI: 10.1186/s12967-024-05619-4.
[32]
WANG B /Y)X, SHANG Y Y, GUO Y X, et al. Value of DCE-MRI based radiomics features for prediction of axillary lymph node metastasis in breast carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(3): 21-27. DOI: 10.12015/issn.1674-8034.2023.03.005.
[33]
ZHANG J W, ZHANG Z S, MAO N, et al. Radiomics nomogram for predicting axillary lymph node metastasis in breast cancer based on DCE-MRI: a multicenter study[J]. J Xray Sci Technol, 2023, 31(2): 247-263. DOI: 10.3233/XST-221336.
[34]
WANG Q, LIN Y Y, DING C, et al. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography[J]. Eur Radiol, 2024, 34(9): 6121-6131. DOI: 10.1007/s00330-024-10638-2.
[35]
SONG D L, YANG F, ZHANG Y J, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 17 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/35379339/. DOI: 10.1186/s40644-022-00450-w.
[36]
FENG W, LIU X R, QU M M, et al. Application progress of peritumoral MRI in breast cancer[J]. Chin J Radiol, 2024, 58(4): 454-459. DOI: 10.3760/cma.j.cn112149-20231117-00396.
[37]
ZHANG C M, DING Z M, CHEN P, et al. The value of machine learning models for predicting axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral radiomics features of DCE-MRI[J]. Chin Comput Med Imag, 2023, 29(6): 618-624. DOI: 10.19627/j.cnki.cn31-1700/th.2023.06.010.
[38]
ZHANG H, MIAO Q, FU Y, et al. Intratumoral and peritumoral radiomics based on automated breast volume scanner for predicting human epidermal growth factor receptor 2 status[J/OL]. Front Oncol, 2025, 15: 1556317 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/40308512/. DOI: 10.3389/fonc.2025.1556317.
[39]
LI X H, HONG M P, LU Z D, et al. Radiomics models to predict axillary lymph node metastasis in breast cancer and analysis of the biological significance of radiomic features[J/OL]. Front Oncol, 2025, 15: 1546229 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/40612356/. DOI: 10.3389/fonc.2025.1546229.
[40]
SONG Y B, LI J J, HUANG Z Y, et al. Predictive value of axillary lymph node metastasis in breast cancer based on DCE-MRI radiomics[J]. J Med Imag, 2025, 35(3): 60-63, 73. DOI: 10.20258/j.cnki.1006-9011.2025.03.014.
[41]
WU P Q, GUO F L, WANG J, et al. Development and validation of a dynamic contrast-enhanced magnetic resonance imaging-based habitat and peritumoral radiomic model to predict axillary lymph node metastasis in patients with breast cancer: a retrospective study[J]. Quant Imaging Med Surg, 2024, 14(12): 8211-8226. DOI: 10.21037/qims-24-558.
[42]
XIE H M, HU D, LIU C H, et al. Value of intratumoral and peritumoral MRI radiomics nomogram in predictin g sentinel lymph node metastasis of breast cancer[J]. Biomed Eng Clin Med, 2025, 29(5): 656-663. DOI: 10.13339/j.cnki.sglc.20250825.019.
[43]
YANG Y T, LIAO T T, LIN X H, et al. Dual-region MRI radiomic analysis indicates increased risk in high-risk breast lesions: bridging intratumoral and peritumoral radiomics for precision decision-making[J/OL]. BMC Cancer, 2025, 25(1): 828 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/40329236/. DOI: 10.1186/s12885-025-14165-1.
[44]
MOTIEI M, MANSOURI S S, TAMIMI A, et al. The diagnostic accuracy of MRI radiomics in axillary lymph node metastasis prediction: a systematic review and meta-analysis[J]. Int J Surg, 2025, 111(9): 6412-6426. DOI: 10.1097/JS9.0000000000002588.
[45]
ZHAO N N, ZHU Y, TANG X M, et al. Prediction of axillary lymph node metastasis in breast cancer based on intra-tumoral and peri-tumoral MRI radiomics nomogram[J]. Chin J Magn Reson Imag, 2023, 14(3): 81-87, 94. DOI: 10.12015/issn.1674-8034.2023.03.014.
[46]
CHEN Y S, LI J P, ZHANG J, et al. Radiomic nomogram for predicting axillary lymph node metastasis in patients with breast cancer[J]. Acad Radiol, 2024, 31(3): 788-799. DOI: 10.1016/j.acra.2023.10.026.
[47]
DONG X, MENG J W, XING J, et al. Predicting axillary lymph node metastasis in young onset breast cancer: a clinical-radiomics nomogram based on DCE-MRI[J/OL]. Breast Cancer, 2025, 17: 103-113 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/39896200/. DOI: 10.2147/BCTT.S495246.
[48]
QIU X M, FU Y F, YE Y, et al. A nomogram based on molecular biomarkers and radiomics to predict lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2022, 12: 790076 [2025-11-20]. https://pubmed.ncbi.nlm.nih.gov/35372007/. DOI: 10.3389/fonc.2022.790076.
[49]
ZHENG P W, LIN G H, CHEN W Y, et al. Prediction of axillary lymph node burden in early breast cancer based on DCE-MRI nomograms of intratumoral and peritumoral radiomics nomogram[J]. Radiol Pract, 2024, 39(10): 1333-1339. DOI: 10.13609/j.cnki.1000-0313.2024.10.009.
[50]
ZHANG S N, ZHAO N N, LI Y, et al. Value of multimodal radiomics nomogram in predicting axillary lymph node metastasis in invasive ductal carcinoma of the breast before surgery[J]. Chin J Magn Reson Imag, 2024, 15(4): 78-87. DOI: 10.12015/issn.1674-8034.2024.04.013.
[51]
CHEN Y H, WANG L J, DONG X, et al. Deep learning radiomics of preoperative breast MRI for prediction of axillary lymph node metastasis in breast cancer[J]. J Digit Imaging, 2023, 36(4): 1323-1331. DOI: 10.1007/s10278-023-00818-9.
[52]
CHEN W Y, LIN G H, KONG C L, et al. Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics[J]. Br J Radiol, 2024, 97(1154): 439-450. DOI: 10.1093/bjr/tqad034.

PREV Advances in artificial intelligence for MRI of carotid artery vulnerable plaques​
NEXT Application Progress of MRI Histogram Analysis in Endometrial Cancer and Cervical Cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn