Share:
Share this content in WeChat
X
Review
Application Progress of MRI Histogram Analysis in Endometrial Cancer and Cervical Cancer
MA Shuangyan  CHEN Yuhui  LI Lintang  BI Qiu  REN Lixiang  GONG Zhimei  LIU Hua 

DOI:10.12015/issn.1674-8034.2026.01.030.


[Abstract] Endometrial carcinoma (EC) and cervical carcinoma (CC) are two common gynecological malignancies, with incidence and mortality rates increasing year by year. And in recent years they have tended to occur in younger patients. Early detection and timely treatment are crucial for improving patient survival and preserving fertility. Conventional MRI serves as the primary imaging modality for preoperative assessment, treatment monitoring, and prognostic evaluation in EC and CC. It holds significant value in the morphological assessment of tumors. However, its capability for quantitatively evaluating tumor heterogeneity and microscopic pathological features remains relatively limited. MRI histogram analysis is an image processing technique based on pixel distribution, which can provide more quantitative information and can reflect the biological characteristics of tumors more objectively and comprehensively. Currently there are fewer research reviews about histogram analysis of different MRI parameters in EC and CC, which lacks a systematic and comprehensive combing and in-depth analysis. Therefore, this paper summarizes the research progress of histogram analysis of various MRI parameters in the diagnosis, staging, histopathological features, efficacy and prognosis assessment of EC and CC. We also analysis the current challenges and look forward to the future direction of the research, in order to provide new ideas for future research. We conclude that there are critical challenges in the current research: insufficient standardization of research methods, single-center small-sample designs and insufficient multimodal image-clinical phenotype correlation models, resulting in limited stability of histogram features. In the future, it is necessary to develop an assessment system that integrates multimodal MRI, multicenter large-sample data and artificial intelligence-enhanced MRI histogram technology, with the aim of promoting intelligent diagnosis and treatment of EC and CC with imaging.
[Keywords] endometrial cancer;cervical cancer;magnetic resonance imaging;histogram analysis

MA Shuangyan1, 2   CHEN Yuhui2*   LI Lintang3   BI Qiu2   REN Lixiang2   GONG Zhimei2   LIU Hua1, 2  

1 College of Medicine, Kunming University of Science and Technology, Kunming 650000, China

2 Department of MRI, the Affiliated Hospital of Kunming University of Science and Technology, the First People's Hospital of Yunnan Province, Kunming 650032, China

3 Department of Radiology, Xinping Yi Dai Autonomous County People's Hospital, Yuxi 653499, China

Corresponding author: CHEN Y H, E-mail: yuhuichen1221@163.com

Conflicts of interest   None.

Received  2025-07-30
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2026.01.030
DOI:10.12015/issn.1674-8034.2026.01.030.

[1]
MILLER K D, NOGUEIRA L, DEVASIA T, et al. Cancer treatment and survivorship statistics, 2022[J]. CA Cancer J Clin, 2022, 72(5): 409-436. DOI: 10.3322/caac.21731.
[2]
OAKNIN A, BOSSE T J, CREUTZBERG C L, et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2022, 33(9): 860-877. DOI: 10.1016/j.annonc.2022.05.009.
[3]
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[4]
ZHENG R S, CHEN R, HAN B F, et al. Cancer incidence and mortality in China, 2022[J]. Chin J Oncol, 2024, 46(3): 221-231. DOI: 10.3760/cma.j.cn112152-20240119-00035.
[5]
MANGANARO L, LAKHMAN Y, BHARWANI N, et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018[J]. Eur Radiol, 2021, 31(10): 7802-7816. DOI: 10.1007/s00330-020-07632-9.
[6]
NOUGARET S, SALA E, LAKHMAN Y, et al. Updated ESUR guidelines for endometrial cancer: integrating MRI with the 2023 FIGO staging revolution[J/OL]. Eur Radiol, 2025 [2025-06-25]. https://doi.org/10.1007/s00330-025-11700-3. DOI: 10.1007/s00330-025-11700-3.
[7]
ZHAO Y J, YOU C, ZHOU X, et al. The volumetric ADC histogram analysis in differentiating stage IA endometrial carcinoma from endometrial polyp[J]. Br J Radiol, 2024, 97(1158): 1139-1145. DOI: 10.1093/bjr/tqae081.
[8]
YANG L, HU H J, YANG X J, et al. Whole-tumor histogram analysis of multiple non-Gaussian diffusion models at high b values for assessing cervical cancer[J]. Abdom Radiol (NY), 2024, 49(7): 2513-2524. DOI: 10.1007/s00261-024-04486-3.
[9]
MINH N D, HUNG N D, TUAN T A, et al. Apparent diffusion coefficient histogram in the differentiation of benign and malignant testicular tumors[J]. Int J Med Sci, 2024, 21(2): 200-206. DOI: 10.7150/ijms.88486.
[10]
LI X, CHAI W M, SUN K, et al. Whole-tumor histogram analysis of multiparametric breast magnetic resonance imaging to differentiate pure mucinous breast carcinomas from fibroadenomas with high-signal intensity on T2WI[J]. Magn Reson Imaging, 2024, 106: 8-17. DOI: 10.1016/j.mri.2023.11.013.
[11]
MIAO L, JIANG J M, LI J W, et al. Whole-tumor histogram analysis of synthetic MRI for the differentiation of benign and malignant soft-tissue tumors: A preliminary study[J/OL]. Eur Radiol, 2025 [2025-07-15]. https://pubmed.ncbi.nlm.nih.gov/40569439/. DOI: 10.1007/s00330-025-11770-3.
[12]
BIAN X L, SUN Q, REN Q Z, et al. Histogram analysis of apparent diffusion coefficient for preoperative prediction of mid-term efficacy of high-intensity focused ultrasound in the treatment of uterine fibroids[J/OL]. Abdom Radiol (NY), 2025 [2025-07-15]. https://doi.org/10.1007/s00261-025-05055-y. DOI: 10.1007/s00261-025-05055-y.
[13]
SHI Z, ZHANG B Y, MIAO X Y, et al. High-risk characteristics of recurrent ischemic stroke after intensive medical management for 6-month follow-up: a histogram study on vessel wall MRI[J]. Eur Radiol, 2025, 35(3): 1313-1324. DOI: 10.1007/s00330-024-11304-3.
[14]
ZHU Y J, WANG Y, TAO X F, et al. Utility of apparent diffusion coefficient histogram analysis in differentiating benign and malignant palate lesions[J/OL]. Eur J Radiol, 2022, 157: 110566 [2025-07-15]. https://doi.org/10.1016/j.ejrad.2022.110566. DOI: 10.1016/j.ejrad.2022.110566.
[15]
KAN S J, SUN Y W, AI K, et al. Correlation of pathologic features and prognostic factors in rectal adenocarcinoma based on APT imaging and IVIM-DWI histogram[J/OL]. Magn Reson Imaging, 2025, 122: 110430 [2025-06-28]. https://pubmed.ncbi.nlm.nih.gov/40456335/. DOI: 10.1016/j.mri.2025.110430.
[16]
FANG S B, ZHU Y F, WANG S W. Apparent diffusion coefficient histogram analysis and its application in evaluation of tumors[J]. Int J Med Radiol, 2021, 44(6): 706-711. DOI: 10.19300/j.2021.Z18850.
[17]
TAKEUCHI M, MATSUZAKI K, UEHARA H, et al. Pathologies of the uterine endometrial cavity: usual and unusual manifestations and pitfalls on magnetic resonance imaging[J]. Eur Radiol, 2005, 15(11): 2244-2255. DOI: 10.1007/s00330-005-2814-x.
[18]
ZHOU X, ZHAO Y J, HUANG L X, et al. The value of whole volume ADC histogram in differentiating stage Ia endometrial cancer and endometrial polyps[J]. Radiol Pract, 2021, 36(12): 1538-1542. DOI: 10.13609/j.cnki.1000-0313.2021.12.015.
[19]
ZHANG J Y, YU X D, ZHANG X M, et al. Whole-lesion apparent diffusion coefficient (ADC) histogram as a quantitative biomarker to preoperatively differentiate stage IA endometrial carcinoma from benign endometrial lesions[J/OL]. BMC Med Imaging, 2022, 22(1): 139 [2025-06-28]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9358891/. DOI: 10.1186/s12880-022-00864-9.
[20]
KEN T M, KOYAMA T, SAGA T, et al. Diffusion-weighted MR imaging of uterine endometrial cancer[J]. J Magn Reson Imaging, 2007, 26(3): 682-687. DOI: 10.1002/jmri.20997.
[21]
DENG Y, ZHAO T T, ZHANG J, et al. Development of a nomogram based on whole-tumor multiparametric MRI histogram analysis to predict deep myometrial invasion in stage I endometrioid endometrial carcinoma preoperatively[J]. Acta Radiol, 2025, 66(1): 50-61. DOI: 10.1177/02841851241297603.
[22]
AMANT F, MOERMAN P, NEVEN P, et al. Endometrial cancer[J]. Lancet, 2005, 366(9484): 491-505. DOI: 10.1016/S0140-6736(05)67063-8.
[23]
AN T, KIM C K. Pathological characteristics and risk stratification in patients with stage I endometrial cancer: utility of apparent diffusion coefficient histogram analysis[J/OL]. Br J Radiol, 2021, 94(1126): 20210151 [2025-06-28]. https://doi.org/10.1259/bjr.20210151. DOI: 10.1259/bjr.20210151.
[24]
MA X L, SHEN M H, HE Y M, et al. The role of volumetric ADC histogram analysis in preoperatively evaluating the tumour subtype and grade of endometrial cancer[J/OL]. Eur J Radiol, 2021, 140: 109745 [2025-06-28]. https://doi.org/10.1016/j.ejrad.2021.109745. DOI: 10.1016/j.ejrad.2021.109745.
[25]
GHOSH A, SINGH T, SINGLA V, et al. DTI histogram parameters correlate with the extent of myoinvasion and tumor type in endometrial carcinoma: A preliminary analysis[J]. Acta Radiol, 2020, 61(5): 675-684. DOI: 10.1177/0284185119875019.
[26]
PALMÉR M, ÅKESSON Å, LJUNGBERG M, et al. Preoperative risk assessment of endometrial cancer using histogram analysis of weighted and quantitative MRI images[J/OL]. Abdom Radiol (NY), 2025 [2025-07-12]. https://doi.org/10.1007/s00261-025-05069-6. DOI: 10.1007/s00261-025-05069-6.
[27]
ALWAFAI Z, BECK M H, FAZELI S, et al. Accuracy of endometrial sampling in the diagnosis of endometrial cancer: A multicenter retrospective analysis of the JAGO-NOGGO[J/OL]. BMC Cancer, 2024, 24(1): 380 [2025-06-28]. https://doi.org/10.1186/s12885-024-12127-7. DOI: 10.1186/s12885-024-12127-7.
[28]
CHRYSSOU E G, MANIKIS G C, IOANNIDIS G S, et al. Diffusion weighted imaging in the assessment of tumor grade in endometrial cancer based on intravoxel incoherent motion MRI[J/OL]. Diagnostics (Basel), 2022, 12(3): 692 [2025-06-28]. https://doi.org/10.3390/diagnostics12030692. DOI: 10.3390/diagnostics12030692.
[29]
SUN X N, JIANG J X, HU C R, et al. Preoperative evaluation of differentiation of endometrial cancer by histogram analysis of DCE-MRI[J]. J Clin Radiol, 2020, 39(11): 2276-2281. DOI: 10.13437/j.cnki.jcr.2020.11.030.
[30]
MAKKER V, MACKAY H, RAY-COQUARD I, et al. Endometrial cancer[J/OL]. Nat Rev Dis Primers, 2021, 7: 88 [2025-06-28]. https://www.nature.com/articles/s41572-021-00324-8. DOI: 10.1038/s41572-021-00324-8.
[31]
BEREK J S, MATIAS-GUIU X, CREUTZBERG C, et al. FIGO staging of endometrial cancer: 2023[J]. Int J Gynaecol Obstet, 2023, 162(2): 383-394. DOI: 10.1002/ijgo.14923.
[32]
ABU-RUSTUM N, YASHAR C, AREND R, et al. Uterine neoplasms, version 1.2023, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2023, 21(2): 181-209. DOI: 10.6004/jnccn.2023.0006.
[33]
MAHESHWARI E, NOUGARET S, STEIN E B, et al. Update on MRI in evaluation and treatment of endometrial cancer[J]. Radiographics, 2022, 42(7): 2112-2130. DOI: 10.1148/rg.220070.
[34]
SBARRA M, LUPINELLI M, BROOK O R, et al. Imaging of endometrial cancer[J]. Radiol Clin North Am, 2023, 61(4): 609-625. DOI: 10.1016/j.rcl.2023.02.007.
[35]
LUPINELLI M, SBARRA M, KILCOYNE A, et al. MR imaging of gynecologic tumors: pearls, pitfalls, and tumor mimics[J]. Radiol Clin North Am, 2023, 61(4): 687-711. DOI: 10.1016/j.rcl.2023.02.011.
[36]
SONG J C, LU S S, ZHANG J, et al. Quantitative assessment of diffusion kurtosis imaging depicting deep myometrial invasion: a comparative analysis with diffusion-weighted imaging[J]. Diagn Interv Radiol, 2020, 26(2): 74-81. DOI: 10.5152/dir.2019.18366.
[37]
MA X L, REN X J, SHEN M H, et al. Volumetric ADC histogram analysis for preoperative evaluation of LVSI status in stage I endometrioid adenocarcinoma[J]. Eur Radiol, 2022, 32(1): 460-469. DOI: 10.1007/s00330-021-07996-6.
[38]
SUN Y Y, ZHANG J Y, WANG Y L, et al. The value of multi-sequence magnetic resonance imaging and whole-tumor apparent diffusion coefficient histogram analysis in differentiating p53 abnormal from non-p53 abnormal endometrial carcinoma[J/OL]. Front Oncol, 2025, 15: 1565152 [2025-06-28]. https://doi.org/10.3389/fonc.2025.1565152. DOI: 10.3389/fonc.2025.1565152.
[39]
NING Y, LIU W, WANG H J, et al. Determination of p53abn endometrial cancer: a multitask analysis using radiological-clinical nomogram on MRI[J]. Br J Radiol, 2024, 97(1157): 954-963. DOI: 10.1093/bjr/tqae066.
[40]
MA X L, XU L M, MA F H, et al. Whole-tumor apparent diffusion coefficient histogram analysis for preoperative risk stratification in endometrial endometrioid adenocarcinoma[J]. Int J Gynaecol Obstet, 2024, 164(3): 1174-1183. DOI: 10.1002/ijgo.15226.
[41]
MA X L, REN X J, MA F H, et al. Volumetric apparent diffusion coefficient (ADC) histogram metrics as imaging biomarkers for pretreatment predicting response to fertility-sparing treatment in patients with endometrial cancer[J]. Gynecol Oncol, 2022, 165(3): 594-602. DOI: 10.1016/j.ygyno.2022.04.008.
[42]
SUROV A, PECH M, POWERSKI M, et al. Pretreatment apparent diffusion coefficient cannot predict histopathological features and response to neoadjuvant radiochemotherapy in rectal cancer: a meta-analysis[J]. Dig Dis, 2022, 40(1): 33-49. DOI: 10.1159/000515631.
[43]
XIAO M L, MA X L, MA F H, et al. Whole-tumor histogram analysis of apparent diffusion coefficient for differentiating adenosquamous carcinoma and adenocarcinoma from squamous cell carcinoma in patients with cervical cancer[J]. Acta Radiol, 2022, 63(10): 1415-1424. DOI: 10.1177/02841851211035915.
[44]
MCCLUGGAGE W G, SINGH N, GILKS C B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020)[J]. Histopathology, 2022, 80(5): 762-778. DOI: 10.1111/his.14609.
[45]
WANG X M, ZHANG H Y, XU J, et al. Necessity of systematic pelvic lymphadenectomy for early-stage cervical cancer[J/OL]. Eur J Gynaecol Oncol, 2024, 45(2): 44 [2025-06-28]. https://doi.org/10.3389/fonc.2025.1565152. DOI: 10.22514/ejgo.2024.026.
[46]
CHENG J M, LUO W X, TAN B G, et al. Whole-tumor histogram analysis of apparent diffusion coefficients for predicting lymphovascular space invasion in stage IB-IIA cervical cancer[J/OL]. Front Oncol, 2023, 13: 1206659 [2025-06-26]. https://doi.org/10.3389/fonc.2023.1206659. DOI: 10.3389/fonc.2023.1206659.
[47]
LARRE A, FERNANDES R C, GERBASI G J, et al. Tumor-infiltrating lymphocytes and tumor-stroma ratio on early-stage cervix carcinoma: prognostic value of two distinct morphological patterns of microenvironment[J/OL]. Cureus, 2023, 15(9): e45148 [2025-06-26]. https://doi.org/10.7759/cureus.45148. DOI: 10.7759/cureus.45148.
[48]
SUROV A, BORGGREFE J, HÖHN A K, et al. Associations between ADC histogram analysis values and tumor-micro milieu in uterine cervical cancer[J/OL]. Cancer Imaging, 2024, 24(1): 170 [2025-06-26]. https://doi.org/10.1186/s40644-024-00814-4. DOI: 10.1186/s40644-024-00814-4.
[49]
ZHOU Q, ZOU D L, XIANG Y, et al. Chinese expert consensus on surgical staging of cervical cancer(2023 edition)[J]. Chin J Pract Gynecol Obstet, 2023, 39(10): 996-1002. DOI: 10.19538/j.fk2023100109.
[50]
QIAN W L, CHEN Q, HU C H. Whole-lesion apparent diffusion coefficient histogram analysis for assessing normal-sized lymph node metastasis in cervical cancer: comparison between readout-segmented and single-shot echo-planar diffusion-weighted imaging[J]. J Comput Assist Tomogr, 2023, 47(4): 554-560. DOI: 10.1097/RCT.0000000000001463.
[51]
GONCALVES A, FABBRO M, LHOMMÉ C, et al. A phase II trial to evaluate gefitinib as second- or third-line treatment in patients with recurring locoregionally advanced or metastatic cervical cancer[J]. Gynecol Oncol, 2008, 108(1): 42-46. DOI: 10.1016/j.ygyno.2007.07.057.
[52]
PERUCHO J A U, WANG M D, TSE K Y, et al. Association between MRI histogram features and treatment response in locally advanced cervical cancer treated by chemoradiotherapy[J]. Eur Radiol, 2021, 31(3): 1727-1735. DOI: 10.1007/s00330-020-07217-6.
[53]
SALEH G A, ELGED B A, SALEH M M, et al. The added value of apparent diffusion coefficient and histogram analysis in assessing treatment response of locally advanced cervical cancer[J]. J Comput Assist Tomogr, 2025, 49(1): 64-72. DOI: 10.1097/RCT.0000000000001642.
[54]
ZHANG A N, SONG J C, MA Z L, et al. Combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging to predict neoadjuvant chemotherapy effect in FIGO stage IB2-IIA2 cervical cancers[J]. La Radiol Med, 2020, 125(12): 1233-1242. DOI: 10.1007/s11547-020-01214-x.
[55]
DENG Y, DAI Q, WANG Y, et al. Value of whole tumor volume ADC nomogram in diagnosing high-grade endometrial carcinoma[J]. J Mod Oncol, 2023, 31(18): 3473-3480. DOI: 10.3969/j.issn.1672-4992.2023.18.026.
[56]
MA X L, CAI S Q, LU J J, et al. The added value of ADC-based nomogram in assessing the depth of myometrial invasion of endometrial endometrioid adenocarcinoma[J]. Acad Radiol, 2024, 31(6): 2324-2333. DOI: 10.1016/j.acra.2023.11.016.
[57]
LI Y Z, LIU P, MAO B H, et al. Development of an improved diagnostic nomogram for preoperative prediction of small cell neuroendocrine cancer of the cervix[J/OL]. Br J Radiol, 2022, 95(1140): 20220368 [2025-06-26]. https://doi.org/10.1259/bjr.20220368. DOI: 10.1259/bjr.20220368.
[58]
SU Y, ZENG K J, YAN Z H, et al. Predicting the Ki-67 proliferation index in cervical cancer: a preliminary comparative study of four non-Gaussian diffusion-weighted imaging models combined with histogram analysis[J]. Quant Imaging Med Surg, 2024, 14(10): 7484-7495. DOI: 10.21037/qims-24-576.
[59]
QIN Y J, TANG C L, HU Q L, et al. Assessment of prognostic factors and molecular subtypes of breast cancer with a continuous-time random-walk MR diffusion model: using whole tumor histogram analysis[J]. J Magn Reson Imaging, 2023, 58(1): 93-105. DOI: 10.1002/jmri.28474.
[60]
LE BIHAN D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure[J]. Radiology, 2013, 268(2): 318-322. DOI: 10.1148/radiol.13130420.
[61]
MAO C P, HU L X, JIANG W, et al. Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models[J]. Eur Radiol, 2024, 34(4): 2546-2559. DOI: 10.1007/s00330-023-10198-x.
[62]
WANG X C, FANG Y Q, WANG Q Q, et al. Self-supervised graph contrastive learning with diffusion augmentation for functional MRI analysis and brain disorder detection[J/OL]. Med Image Anal, 2025, 101: 103403 [2025-06-26]. https://www.sciencedirect.com/science/article/abs/pii/S1361841524003281via%3Dihub. DOI: 10.1016/j.media.2024.103403.
[63]
GOYAL M, TAFE L J, FENG J X, et al. Deep learning for grading endometrial cancer[J]. Am J Pathol, 2024, 194(9): 1701-1711. DOI: 10.1016/j.ajpath.2024.05.003.
[64]
VELLMER S, AYDOGAN D B, ROINE T, et al. Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks[J/OL]. Commun Biol, 2025, 8(1): 512 [2025-06-26]. https://www.nature.com/articles/s42003-025-07936-w. DOI: 10.1038/s42003-025-07936-w.
[65]
FEDOROV A, GEENJAAR E, WU L, et al. Self-supervised multimodal learning for group inferences from MRI data: Discovering disorder-relevant brain regions and multimodal links[J/OL]. Neuroimage, 2024, 285: 120485 [2025-06-26]. https://www.sciencedirect.com/science/article/pii/S1053811923006353via%3Dihub. DOI: 10.1016/j.neuroimage.2023.120485.

PREV Research progress in predicting axillary lymph node metastasis in breast cancer using dynamic contrast-enhanced magnetic resonance imaging-based radiomics
NEXT The assessment method for skeletal muscle fat infiltration: quantitative magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn