Share:
Share this content in WeChat
X
Review
The assessment method for skeletal muscle fat infiltration: quantitative magnetic resonance imaging
WANG Jing  LI Junfei  ZHAO Jian 

DOI:10.12015/issn.1674-8034.2026.01.031.


[Abstract] Fat infiltration (FI) in skeletal muscles is extensively involved in the pathological progression of various diseases. Accurately assessing the degree of muscle fat infiltration is of paramount importance for formulating effective treatment plans and intervening in disease progression. Radiological parameters for quantifying fat infiltration, particularly those derived from quantitative magnetic resonance imaging (qMRI) technology, have demonstrated significant potential as diagnostic elements for diseases and predictive tools for metabolic risks. This article primarily focuses on introducing the advantages and limitations of qMRI techniques, including chemical shift encoding magnetic resonance imaging (CSE-MRI), magnetic resonance spectroscopy (MRS), T1/T2 mapping, and texture analysis, as well as their clinical applications in the diagnosis and monitoring of diseases such as muscular dystrophy, metabolic diseases, and degenerative conditions associated with osteoarthritis. Studies have shown that qMRI technology can precisely quantify muscle fat infiltration and holds promise as an important non-invasive diagnostic tool in the field of muscle pathology.
[Keywords] quantitative magnetic resonance imaging;fat quantification;skeletal muscle fat infiltration;biomarker;non-invasive diagnosis

WANG Jing1, 2   LI Junfei1   ZHAO Jian1*  

1 Department of Medical Imaging, Hebei Medical University Third Hospital, Shijiazhuang 050051, China

2 Hebei Medical University, Shijiazhuang 050017, China

Corresponding author: ZHAO J, E-mail: zhaojiansohu@126.com

Conflicts of interest   None.

Received  2025-07-31
Accepted  2025-11-10
DOI: 10.12015/issn.1674-8034.2026.01.031
DOI:10.12015/issn.1674-8034.2026.01.031.

[1]
PEREIRA M J, VRANIC M, KAMBLE P G, et al. CDKN2C expression in adipose tissue is reduced in type II diabetes and central obesity: impact on adipocyte differentiation and lipid storage [J]. Transl Res, 2022, 242: 105-121. DOI: 10.1016/j.trsl.2021.12.003.
[2]
KIM Y, LEE J H, CHO E S, et al. Albumin-myosteatosis gauge as a novel prognostic risk factor in patients with non-metastatic colorectal cancer[J]. J Cachexia Sarcopenia Muscle, 2023, 14(2): 860-868. DOI: 10.1002/jcsm.13183.
[3]
HADJISPYROU S, GIANNOPOULOS A, PHILIPPOU A, et al. Mitochondrial dysfunction and sarcopenic obesity: the role of exercise[J/OL]. J Clin Med, 2023, 12(17): 5628 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/37685695. DOI: 10.3390/jcm12175628.
[4]
LI C W, YU K, SHYH-CHANG N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 781-794. DOI: 10.1002/jcsm.12901.
[5]
WANG L Y, VALENCAK T G, SHAN T Z. Fat infiltration in skeletal muscle: influential triggers and regulatory mechanism[J/OL]. iScience, 2024, 27(3): 109221 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/38433917. DOI: 10.1016/j.isci.2024.109221.
[6]
GOODPASTER B H, BERGMAN B C, BRENNAN A M, et al. Intermuscular adipose tissue in metabolic disease[J]. Nat Rev Endocrinol, 2023, 19(5): 285-298. DOI: 10.1038/s41574-022-00784-2.
[7]
KRŠŠÁK M, LINDEBOOM L, SCHRAUWEN-HINDERLING V, et al. Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations[J/OL]. NMR Biomed, 2021, 34(5): e4266 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/32022964. DOI: 10.1002/nbm.4266.
[8]
GARCIA-DIEZ A I, PORTA-VILARO M, ISERN-KEBSCHULL J, et al. Myosteatosis: diagnostic significance and assessment by imaging approaches[J]. Quant Imaging Med Surg, 2024, 14(11): 7937-7957. DOI: 10.21037/qims-24-365.
[9]
SINHA U, SINHA S. Magnetic resonance imaging biomarkers of muscle[J]. Tomography, 2024, 10(9): 1411-1438. DOI: 10.3390/tomography10090106.
[10]
GÜTTSCHES A K, FORSTING J, KNEIFEL M, et al. Pre- and post-skeletal muscle biopsy quantitative magnetic resonance imaging reveals correlations with histopathological findings[J/OL]. Eur J Neurol, 2024, 31(12): e16479 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/39283047. DOI: 10.1111/ene.16479.
[11]
TAGLIAFICO A S, BIGNOTTI B, TORRI L, et al. Sarcopenia: how to measure, when and why[J]. La Radiol Med, 2022, 127(3): 228-237. DOI: 10.1007/s11547-022-01450-3.
[12]
TOTO-BROCCHI M, WU Y, JERBAN S, et al. Quantitative ultrasound assessment of fatty infiltration of the rotator cuff muscles using backscatter coefficient[J/OL]. Eur Radiol Exp, 2024, 8(1): 119 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/39436589. DOI: 10.1186/s41747-024-00522-5.
[13]
ZHANG X R, ZHANG X D. Research progress in quantitative assessment by multimodal MRI in skeletal muscle[J]. Int J Med Radiol, 2024, 47(6): 725-729, 735. DOI: 10.19300/j.2024.Z21361.
[14]
ENGELKE K, CHAUDRY O, GAST L, et al. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art[J]. J Orthop Translat, 2023, 42: 57-72. DOI: 10.1016/j.jot.2023.07.005.
[15]
XIE J H, ZHOU M, GUO Z, et al. A quantitative fatty infiltration evaluation of the supraspinatus muscle: enhanced clinical relevance and improved diagnostic value on predicting retear compared with the goutallier classification[J]. Am J Sports Med, 2025, 53(4): 952-960. DOI: 10.1177/03635465251313809.
[16]
ZHANG W, FU C, YAN D, et al. Quantification of volumetric thigh and paravertebral muscle fat content: comparison of quantitative Dixon (Q-Dixon) magnetic resonance imaging (MRI) with high-speed T(2)-corrected multiecho MR spectroscopy [J]. Quant Imaging Med Surg, 2024, 14(7): 4490-4505. DOI: 10.21037/qims-24-127.
[17]
HAN G Y, JIANG Y, ZHANG B, et al. Imaging evaluation of fat infiltration in paraspinal muscles on MRI: a systematic review with a focus on methodology[J]. Orthop Surg, 2021, 13(4): 1141-1148. DOI: 10.1111/os.12962.
[18]
BASTY N, THANAJ M, CULE M, et al. Artifact-free fat-water separation in Dixon MRI using deep learning[J/OL]. J Big Data, 2023, 10(1): 4 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/36686622. DOI: 10.1186/s40537-022-00677-1.
[19]
ELFAAL M, SUPERSAD A, FERGUSON C, et al. Two-point Dixon and six-point Dixon magnetic resonance techniques in the detection, quantification and grading of hepatic steatosis[J]. World J Radiol, 2023, 15(10): 293-303. DOI: 10.4329/wjr.v15.i10.293.
[20]
MA J F. Dixon techniques for water and fat imaging[J]. J Magn Reson Imaging, 2008, 28(3): 543-558. DOI: 10.1002/jmri.21492.
[21]
WIDHOLM P, AHLGREN A, KARLSSON M, et al. Quantitative muscle analysis in facioscapulohumeral muscular dystrophy using whole-body fat-referenced MRI: Protocol development, multicenter feasibility, and repeatability[J]. Muscle Nerve, 2022, 66(2): 183-192. DOI: 10.1002/mus.27638.
[22]
DYKE J P. Quantitative MRI proton density fat fraction: a coming of age[J]. Radiology, 2021, 298(3): 652-653. DOI: 10.1148/radiol.2020204356.
[23]
LI J, WANG Y, ZHANG X, et al. Associations of muscle size and fatty infiltration with bone mineral density of the proximal femur bone[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 990487 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/36237187. DOI: 10.3389/fendo.2022.990487.
[24]
LIU C Y, MCKENZIE C A, YU H Z, et al. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise[J]. Magn Reson Med, 2007, 58(2): 354-364. DOI: 10.1002/mrm.21301.
[25]
WANG X K, COLGAN T J, HINSHAW L A, et al. T1-corrected quantitative chemical shift-encoded MRI[J]. Magn Reson Med, 2020, 83(6): 2051-2063. DOI: 10.1002/mrm.28062.
[26]
ROBERTS N T, HERNANDO D, PANAGIOTOPOULOS N, et al. Addressing concomitant gradient phase errors in time-interleaved chemical shift-encoded MRI fat fraction and R2 * mapping with a pass-specific phase fitting method[J]. Magn Reson Med, 2022, 87(6): 2826-2838. DOI: 10.1002/mrm.29175.
[27]
COLGAN T J, ZHAO R Y, ROBERTS N T, et al. Limits of fat quantification in the presence of iron overload[J]. J Magn Reson Imaging, 2021, 54(4): 1166-1174. DOI: 10.1002/jmri.27611.
[28]
ZHAO J, LIN C, LIU D, et al. The diagnostic value of morphological features of fat deposition of sacroiliac joint steatosis in axial spondyloarthritis[J/OL]. Front Med (Lausanne), 2023, 10: 1218834 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/37692786. DOI: 10.3389/fmed.2023.1218834.
[29]
PIPONNIER E, ISHIKAWA M, KUNIMASA Y, et al. Quantification of extramyocellular lipids and intramuscular fat from muscle echo intensity in lower limb muscles: A comparison of four ultrasound devices against magnetic resonance spectroscopy[J]. Sensors (Basel), 2023, 23(11): 5282 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/37300012. DOI: 10.3390/s23115282.
[30]
BUITINGA M, VEERAIAH P, HAANS F, et al. Ectopic lipid deposition in muscle and liver, quantified by proton magnetic resonance spectroscopy[J]. Obesity (Silver Spring), 2023, 31(10): 2447-2459. DOI: 10.1002/oby.23865.
[31]
LIU C Y, YAO J, KOVACS W C, et al. Skeletal muscle magnetic resonance biomarkers in GNE myopathy[J/OL]. Neurology, 2021, 96(5): e798-e808 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/33219145. DOI: 10.1212/wnl.0000000000011231.
[32]
ZHAO F Y, CHEN Y D, ZHANG H T, et al. Multi-echo Dixon and breath-hold T2-corrected multi-echo single-voxel MRS for quantifying hepatic iron overload in rabbits[J]. Acta Radiol, 2023, 64(1): 13-19. DOI: 10.1177/02841851211063007.
[33]
XU T, XU K, SONG Y, et al. High-speed T2-corrected multiecho magnetic resonance spectroscopy for quantitatively detecting skeletal muscle fatty infiltration and predicting the loss of ambulation in patients with Duchenne muscular dystrophy[J]. J Magn Reson Imaging, 2023, 58(4): 1270-1278. DOI: 10.1002/jmri.28641.
[34]
SONG Y, XU K, XU H Y, et al. Longitudinal changes in magnetic resonance imaging biomarkers of the gluteal muscle groups and functional ability in Duchenne muscular dystrophy: a 12-month cohort study[J]. Pediatr Radiol, 2023, 53(13): 2672-2682. DOI: 10.1007/s00247-023-05791-7.
[35]
PENG F, XU H Y, XU T, et al. Multi-parameter quantitative magnetic resonance imaging for early detecting skeletal muscle involvement and predicting functional decline in children with Becker muscular dystrophy[J]. Pediatr Radiol, 2025, 55(1): 136-150. DOI: 10.1007/s00247-024-06104-2.
[36]
REYNGOUDT H, BAUDIN P Y, CARLIER P G, et al. New insights into the spread of MRS-based water T2 values observed in highly fatty replaced muscles[J]. J Magn Reson Imaging, 2023, 58(5): 1557-1568. DOI: 10.1002/jmri.28669.
[37]
KIM H K, SERAI S, MERROW A C, et al. Objective measurement of minimal fat in normal skeletal muscles of healthy children using T2 relaxation time mapping (T2 maps) and MR spectroscopy[J]. Pediatr Radiol, 2014, 44(2): 149-157. DOI: 10.1007/s00247-013-2791-1.
[38]
JOHNSTON J H, KIM H K, MERROW A C, et al. Quantitative skeletal muscle MRI: part 1, derived T2 fat map in differentiation between boys with Duchenne muscular dystrophy and healthy boys[J]. AJR Am J Roentgenol, 2015, 205(2): W207-W215. DOI: 10.2214/AJR.14.13754.
[39]
DIECKMEYER M, INHUBER S, SCHLAEGER S, et al. Texture features of proton density fat fraction maps from chemical shift encoding-based MRI predict paraspinal muscle strength[J/OL]. Diagnostics (Basel), 2021, 11(2): 239 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/33557080. DOI: 10.3390/diagnostics11020239.
[40]
LEONHARDT Y, DIECKMEYER M, ZOFFL F, et al. Associations of texture features of proton density fat fraction maps between lumbar vertebral bone marrow and paraspinal musculature[J/OL]. Biomedicines, 2022, 10(9): 2075 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/36140176. DOI: 10.3390/biomedicines10092075.
[41]
BYUN H, HAN D, CHUN H J, et al. Multiparametric quantification of T1 and T2 relaxation time of bone metastasis in comparison with red or fatty bone marrow using magnetic resonance fingerprinting[J]. Skeletal Radiol, 2024, 53(6): 1071-1080. DOI: 10.1007/s00256-023-04521-2.
[42]
MARTY B, REYNGOUDT H, BOISSERIE J M, et al. Water-fat separation in MR fingerprinting for quantitative monitoring of the skeletal muscle in neuromuscular disorders[J]. Radiology, 2021, 300(3): 652-660. DOI: 10.1148/radiol.2021204028.
[43]
MARTY B, LOPEZ KOLKOVSKY A L, ARAUJO E C A, et al. Quantitative skeletal muscle imaging using 3D MR fingerprinting with water and fat separation[J]. J Magn Reson Imaging, 2021, 53(5): 1529-1538. DOI: 10.1002/jmri.27381.
[44]
VEEGER T T J, VAN ZWET E W, MOHAMAD D AL, et al. Muscle architecture is associated with muscle fat replacement in Duchenne and Becker muscular dystrophies[J]. Muscle Nerve, 2021, 64(5): 576-584. DOI: 10.1002/mus.27399.
[45]
HE R X, LAI Z F, LIANG Y Y. The application value of skeletal muscle MRI imaging in Duchenne muscular dystrophy[J]. Chin J CT MRI, 2024, 22(2): 153-156.
[46]
CRISTIANO L, BROGNA C, TASCA G, et al. Muscle-MRI and functional levels for the evaluation of upper limbs in Duchenne muscular dystrophy: a critical review of the literature[J/OL]. Medicina (Kaunas), 2022, 58(3): 440 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/35334617. DOI: 10.3390/medicina58030440.
[47]
YOSHIOKA W, NAKAMURA H, OBA M, et al. Large phenotypic diversity by genotype in patients with GNE myopathy: 10 years after the establishment of a national registry in Japan[J]. J Neurol, 2024, 271(7): 4453-4461. DOI: 10.1007/s00415-024-12396-z.
[48]
WANG H L, YAN J, ZHU H L, et al. The value of MRI 3D-IDEAL-IQ technique in quantitative evaluation of thigh muscle fat infiltration in type 2 diabetes mellitus[J]. Radiol Pract, 2023, 38(5): 604-609. DOI: 10.13609/j.cnki.1000-0313.2023.05.013.
[49]
JUNG M, RIEDER H, REISERT M, et al. Association between myosteatosis and impaired glucose metabolism: a deep learning whole-body magnetic resonance imaging population phenotyping approach[J]. J Cachexia Sarcopenia Muscle, 2024, 15(5): 1750-1760. DOI: 10.1002/jcsm.13527.
[50]
WANG B W, ZUO L P, FAN J L, et al. Association between higher intermuscular adipose tissue and decreased renal function in patients with systemic lupus erythematosus mediated by insulin resistance[J/OL]. Insights Imaging, 2024, 15(1): 144 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/38886276. DOI: 10.1186/s13244-024-01722-8.
[51]
NACHIT M, BURGIO M D, ABYZOV A, et al. Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease is associated with heterogeneous pattern of fat infiltration in skeletal muscles[J]. Eur Radiol, 2024, 34(3): 1461-1470. DOI: 10.1007/s00330-023-10131-2.
[52]
GOL R M, RAFRAF M. Association between abdominal obesity and pulmonary function in apparently healthy adults: A systematic review[J]. Obes Res Clin Pract, 2021, 15(5): 415-424. DOI: 10.1016/j.orcp.2021.06.011.
[53]
YU X, HUANG Y H, FENG Y Z, et al. Association of muscle fat content and muscle mass with impaired lung function in young adults with obesity: evaluation with MRI[J]. Acad Radiol, 2024, 31(1): 9-18. DOI: 10.1016/j.acra.2023.02.032.
[54]
OKADA S, TANIGUCHI M, YAGI M, et al. Degeneration of the cartilage quality is correlated with a higher intramuscular fat infiltration of the vastus medialis in older adults with pre-to-mild knee osteoarthritis[J/OL]. Eur J Radiol, 2025, 183: 111930 [2025-07-20]. https://pubmed.ncbi.nlm.nih.gov/39848124. DOI: 10.1016/j.ejrad.2025.111930.
[55]
GOLLER S S, KAJDI G W, WIRTH S, et al. Assessment of calf muscle constitution in chronic Achilles tendon disease using Dixon-based MRI[J]. Skeletal Radiol, 2025, 54(7): 1457-1468. DOI: 10.1007/s00256-024-04845-7.

PREV Application Progress of MRI Histogram Analysis in Endometrial Cancer and Cervical Cancer
NEXT Principles and clinical application advances of virtual magnetic resonance elastography based on DWI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn