Share:
Share this content in WeChat
X
Review
Principles and clinical application advances of virtual magnetic resonance elastography based on DWI
SONG Xueliang  CHEN Shujun  DENG Ping  XIONG Yuan  LI Mei  ZHANG Xiaoming  LI Xinghui 

DOI:10.12015/issn.1674-8034.2026.01.032.


[Abstract] virtual magnetic resonance elastography (vMRE) is an emerging technology based on diffusion-weighted imaging (DWI) that noninvasively assesses tissue stiffness by estimating virtual shear modulus through water molecule diffusion. Tissue mechanical properties are closely associated with various diseases such as liver fibrosis and tumor infiltration. However, traditional magnetic resonance elastography relies on specialized vibration devices, limiting its clinical adoption. Recent studies indicate that DWI-vMRE holds diagnostic value in liver fibrosis, intracranial tumors, and lesions in organs such as the breast and lungs, enabling quantitative assessment of tissue mechanical properties without specialized hardware. However, existing research primarily consists of small-sample, single-center studies, with inconsistent models and scanning protocols, and a lack of systematic reviews and standardized guidelines. This paper comprehensively reviews the physical principles, parameter calculation methods, and common scanning strategies of vMRE. It summarizes its application progress in multiple systemic diseases, identifies key limitations such as model assumptions, confounding factors, and reproducibility of results, and explores future research directions integrating vMRE with multimodal MRI and artificial intelligence technologies. This review aims to provide insights for subsequent basic and clinical research and serve as a reference for noninvasive imaging assessment of soft tissue stiffness.
[Keywords] virtual elasticity imaging;diffusion-weighted imaging;magnetic resonance imaging;hardness;non-invasive diagnosis;multimodal imaging

SONG Xueliang1, 2   CHEN Shujun1, 2   DENG Ping1, 2   XIONG Yuan1, 2   LI Mei1   ZHANG Xiaoming1, 2   LI Xinghui1, 2*  

1 Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

2 Sichuan Province Key Laboratory of Medical Imaging; Nanchong 637000, China

Corresponding author: LI X H, E-mail: 15956912758@163.com

Conflicts of interest   None.

Received  2025-11-07
Accepted  2026-01-04
DOI: 10.12015/issn.1674-8034.2026.01.032
DOI:10.12015/issn.1674-8034.2026.01.032.

[1]
CHATTERJEE A, MILLER F H, PANG E. Magnetic resonance elastography of liver: current status and future directions[J]. J Gastrointest Abdom Radiol, 2024, 7(3): 215-225. DOI: 10.1055/s-0044-1786812.
[2]
CHEN Y, LI R K, YANG Y C, et al. Correlation analysis of structural and biomechanical properties of hepatocellular carcinoma tissue[J/OL]. J Biomech, 2022, 141: 111227 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/35917630/. DOI: 10.1016/j.jbiomech.2022.111227.
[3]
MUTHUPILLAI R, LOMAS D J, ROSSMAN P J, et al. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves[J]. Science, 1995, 269(5232): 1854-1857. DOI: 10.1126/science.7569924.
[4]
MEYER T, CASTELEIN J, SCHATTENFROH J, et al. Magnetic resonance elastography in a nutshell: Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation[J/OL]. Prog Nucl Magn Reson Spectrosc, 2024, 144/145: 1-14 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39645347/. DOI: 10.1016/j.pnmrs.2024.05.002.
[5]
MOURA CUNHA G, FAN B Y, NAVIN P J, et al. Interpretation, reporting, and clinical applications of liver MR elastography[J/OL]. Radiology, 2024, 310(3): e231220 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38470236/. DOI: 10.1148/radiol.231220.
[6]
MANDUCA A, BAYLY P J, EHMAN R L, et al. MR elastography: Principles, guidelines, and terminology[J]. Magn Reson Med, 2021, 85(5): 2377-2390. DOI: 10.1002/mrm.28627.
[7]
YIN M, EHMAN R L. MR elastography: practical questions, from the AJR special series on imaging of fibrosis[J/OL]. AJR Am J Roentgenol, 2024, 222(1): e2329437 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37162036/. DOI: 10.2214/AJR.23.29437.
[8]
MCGEE K P. Virtual palpation: the role of MR elastography in quantifying and spatially resolving tissue stiffness as a biomarker of disease[J/OL]. J Am Coll Radiol, 2018, 15(5): 778-780. DOI: 10.1016/j.jacr.2017.12.011.
[9]
FEUILLE C, KARI S, PATEL R, et al. Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease[J/OL]. Sci Rep, 2024, 14: 1765 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38242967/. DOI: 10.1038/s41598-024-51295-1.
[10]
ZHANG Y N, FOWLER K J, OZTURK A, et al. Liver fibrosis imaging: a clinical review of ultrasound and magnetic resonance elastography[J]. J Magn Reson Imaging, 2020, 51(1): 25-42. DOI: 10.1002/jmri.26716.
[11]
DILLMAN J R, TROUT A T, TAYLOR A E, et al. Association between MR elastography liver stiffness and histologic liver fibrosis in children and young adults with autoimmune liver disease[J/OL]. AJR Am J Roentgenol, 2024, 223(1): e2431108 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38630086/. DOI: 10.2214/AJR.24.31108.
[12]
RASMUSSEN A M, FRIISMOSE A I, MUSSMANN B, et al. Repeatability of diffusion-based stiffness prediction-A healthy volunteer study[J]. Radiography, 2024, 30(2): 524-530. DOI: 10.1016/j.radi.2024.01.008.
[13]
SHI J, CHEN L Z, WANG B, et al. Diagnostic value of ultrasound elastography in the differentiation of breast invasive ductal carcinoma and ductal carcinoma in situ[J]. Curr Med Imaging, 2023, 19(3): 286-291. DOI: 10.2174/1573405618666220721091940.
[14]
SIRLI R, SPOREA I, POPESCU A. When to refer patients for liver elastography[J]. Expert Rev Gastroenterol Hepatol, 2024, 18(12): 753-755. DOI: 10.1080/17474124.2024.2444554.
[15]
POLLACK B L, BATMANGHELICH K, CAI S S, et al. Deep learning prediction of voxel-level liver stiffness in patients with nonalcoholic fatty liver disease[J/OL]. Radiol Artif Intell, 2021, 3(6): e200274 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34870213/. DOI: 10.1148/ryai.2021200274.
[16]
LE BIHAN D. What can we see with IVIM MRI [J/OL]. NeuroImage, 2019, 187: 56-67 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/29277647/. DOI: 10.1016/j.neuroimage.2017.12.062.
[17]
BRAUN J, BERNARDING J, SNELLINGS J, et al. On the relationship between viscoelasticity and water diffusion in soft biological tissues[J/OL]. Acta Biomater, 2024, 182: 42-53 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38729549/. DOI: 10.1016/j.actbio.2024.05.007.
[18]
OPHIR J, CÉSPEDES I, PONNEKANTI H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues[J]. Ultrason Imaging, 1991, 13(2): 111-134. DOI: 10.1177/016173469101300201.
[19]
LE BIHAN D, ICHIKAWA S, MOTOSUGI U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: a hypothesis-generating study in the liver[J]. Radiology, 2017, 285(2): 609-619. DOI: 10.1148/radiol.2017170025.
[20]
KROMREY M L, LE BIHAN D, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
[21]
HANNIMAN E, COSTA A F, BOWEN C V, et al. Prospective evaluation of virtual MR elastography with diffusion-weighted imaging in subjects with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2022, 56(5): 1448-1456. DOI: 10.1002/jmri.28154.
[22]
JUNG H N, RYOO I, SUH S, et al. Evaluating the elasticity of metastatic cervical lymph nodes in head and neck squamous cell carcinoma patients using DWI-based virtual MR elastography[J]. Magn Reson Med Sci, 2024, 23(1): 49-55. DOI: 10.2463/mrms.mp.2022-0082.
[23]
YUSHKEVICH P A, PIVEN J, HAZLETT H C, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability[J]. Neuroimage, 2006, 31(3): 1116-1128. DOI: 10.1016/j.neuroimage.2006.01.015.
[24]
ZHANG S, DU Y H, LIANG T, et al. Diagnostic efficiency of intravoxel incoherent motion-based virtual magnetic resonance elastography in pulmonary neoplasms[J/OL]. Cancer Imaging, 2024, 24(1): 88 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38971790/. DOI: 10.1186/s40644-024-00728-1.
[25]
PARK J H, SEO N, CHUNG Y E, et al. Noninvasive evaluation of liver fibrosis: comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography[J]. Eur Radiol, 2021, 31(7): 4813-4823. DOI: 10.1007/s00330-020-07600-3.
[26]
PAROLA M, PINZANI M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies[J/OL]. Mol Aspects Med, 2024, 95: 101231 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38056058/. DOI: 10.1016/j.mam.2023.101231.
[27]
ROEHLEN N, CROUCHET E, BAUMERT T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives[J/OL]. Cells, 2020, 9(4): 875 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/32260126/. DOI: 10.3390/cells9040875.
[28]
HAMMERICH L, TACKE F. Hepatic inflammatory responses in liver fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(10): 633-646. DOI: 10.1038/s41575-023-00807-x.
[29]
LIANG Y Z, LI D W. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J/OL]. BMC Gastroenterol, 2020, 20(1): 89 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/32252641/. DOI: 10.1186/s12876-020-01234-x.
[30]
ICHIKAWA S, MOTOSUGI U, MORISAKA H, et al. MRI-based staging of hepatic fibrosis: Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography[J]. J Magn Reson Imaging, 2015, 42(1): 204-210. DOI: 10.1002/jmri.24760.
[31]
JANG W, JO S, SONG J S, et al. Comparison of diffusion-weighted imaging and MR elastography in staging liver fibrosis: a meta-analysis[J]. Abdom Radiol, 2021, 46(8): 3889-3907. DOI: 10.1007/s00261-021-03055-2.
[32]
HENNEDIGE T P, WANG G, LEUNG F P, et al. Magnetic resonance elastography and diffusion weighted imaging in the evaluation of hepatic fibrosis in chronic hepatitis B[J]. Gut Liver, 2017, 11(3): 401-408. DOI: 10.5009/gnl16079.
[33]
ÖZTÜRK V S, ERTEKIN E. Diagnostic performance of shear wave elastography and diffusion-weighted magnetic resonance imaging in cervical lymph nodes: a comparative study[J]. Turk J Med Sci, 2021, 51(6): 2931-2942. DOI: 10.3906/sag-2012-62.
[34]
YANG L, ZHOU G, LIU L, et al. Staging chronic hepatitis B related liver fibrosis with diffusion-weighted MRI-based virtual elastography: comparisons with serum fibrosis indexes[J/OL]. Clin Radiol, 2025, 80: 106750 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39657563/. DOI: 10.1016/j.crad.2024.106750.
[35]
YANG L, ZHOU G F, LIU L H, et al. Assessing liver fibrosis in chronic liver disease: Comparison of diffusion-weighted MR elastography and two-dimensional shear-wave elastography using histopathologic assessment as the reference standard[J/OL]. Ann Hepatol, 2025, 30(1): 101743 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39662592/. DOI: 10.1016/j.aohep.2024.101743.
[36]
ONAR M A, NURAL M S, DEVECI A, et al. Evaluation of liver fibrosis using diffusion-weighted virtual magnetic resonance elastography and ultrasound elastography[J/OL]. Abdom Radiol, 2025 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40500481/. DOI: 10.1007/s00261-025-05043-2.
[37]
PAIK J M, HENRY L, YOUNOSSI Y, et al. The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019[J/OL]. Hepatol Commun, 2023, 7(10): e0251 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37782469/. DOI: 10.1097/HC9.0000000000000251.
[38]
WONGTRAKUL W, CHARATCHAROENWITTHAYA N, CHARATCHAROENWITTHAYA P. Lean non-alcoholic fatty liver disease and the risk of all-cause mortality: an updated meta-analysis[J/OL]. Ann Hepatol, 2024, 29(3): 101288 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38278181/. DOI: 10.1016/j.aohep.2024.101288.
[39]
DAG N, SARICI B, IGCI G, et al. Diagnostic performance of ultrasound-based liver fat quantification with reference to magnetic resonance imaging proton density fat fraction and histology[J]. J Clin Ultrasound, 2025, 53(6): 1265-1271. DOI: 10.1002/jcu.24010.
[40]
OZTURK A, GRAJO J R, GEE M S, et al. Quantitative hepatic fat quantification in non-alcoholic fatty liver disease using ultrasound-based techniques: a review of literature and their diagnostic performance[J]. Ultrasound Med Biol, 2018, 44(12): 2461-2475. DOI: 10.1016/j.ultrasmedbio.2018.07.019.
[41]
BOHTE A E, VAN WERVEN J R, BIPAT S, et al. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis[J]. Eur Radiol, 2011, 21(1): 87-97. DOI: 10.1007/s00330-010-1905-5.
[42]
STAREKOVA J, HERNANDO D, PICKHARDT P J, et al. Quantification of liver fat content with CT and MRI: state of the art[J]. Radiology, 2021, 301(2): 250-262. DOI: 10.1148/radiol.2021204288.
[43]
XIAO G Q, ZHU S X, XIAO X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis[J]. Hepatology, 2017, 66(5): 1486-1501. DOI: 10.1002/hep.29302.
[44]
YIN Z Y, MURPHY M C, LI J H, et al. Prediction of nonalcoholic fatty liver disease (NAFLD) activity score (NAS) with multiparametric hepatic magnetic resonance imaging and elastography[J]. Eur Radiol, 2019, 29(11): 5823-5831. DOI: 10.1007/s00330-019-06076-0.
[45]
LE BIHAN D, BOWEN C, CLARKE S. Diffusion-based virtual MR elastography in subjects with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2023, 57(2): 648-649. DOI: 10.1002/jmri.28304.
[46]
DE SCHELLENBERGER A A, TZSCHÄTZSCH H, POLCHLOPEK B, et al. Sensitivity of multifrequency magnetic resonance elastography and diffusion-weighted imaging to cellular and stromal integrity of liver tissue[J/OL]. J Biomech, 2019, 88: 201-208 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/30961968/. DOI: 10.1016/j.jbiomech.2019.03.037.
[47]
MARTELLETTI C, ARMANDI A, CAVIGLIA G P, et al. Elastography for characterization of focal liver lesions: current evidence and future perspectives[J]. Minerva Gastroenterol, 2021, 67(2): 196-208. DOI: 10.23736/S2724-5985.20.02747-6.
[48]
WANG J H, LI X, LI C X, et al. The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions[J]. Chin J Magn Reson Imag, 2023, 14(11): 56-61. DOI: 10.12015/issn.1674-8034.2023.11.010.
[49]
OTA T, HORI M, LE BIHAN D, et al. Diffusion-based virtual MR elastography of the liver: can it be extended beyond liver fibrosis [J/OL]. J Clin Med, 2021, 10(19): 4553 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34640568/. DOI: 10.3390/jcm10194553.
[50]
CHEN J J, SUN W, WANG W T, et al. Diffusion-based virtual MR elastography for predicting recurrence of solitary hepatocellular carcinoma after hepatectomy[J/OL]. Cancer Imaging, 2024, 24(1): 106 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39138500/. DOI: 10.1186/s40644-024-00759-8.
[51]
ARANI A, MANDUCA A, EHMAN R L, et al. Harnessing brain waves: a review of brain magnetic resonance elastography for clinicians and scientists entering the field[J/OL]. Br J Radiol, 2021, 94(1119): 20200265 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/33605783/. DOI: 10.1259/bjr.20200265.
[52]
MIYOSHI K, WADA T, UWANO I, et al. Predicting the consistency of intracranial meningiomas using apparent diffusion coefficient maps derived from preoperative diffusion-weighted imaging[J]. J Neurosurg, 2020, 135(3): 969-976. DOI: 10.3171/2020.6.JNS20740.
[53]
LAGERSTRAND K, GAEDES N, ERIKSSON S, et al. Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency[J]. Pituitary, 2021, 24(4): 530-541. DOI: 10.1007/s11102-021-01129-4.
[54]
AUNAN-DIOP J S, ANDERSEN M C S, FRIISMOSE A I, et al. Virtual magnetic resonance elastography predicts the intraoperative consistency of meningiomas[J]. J Neuroradiol, 2023, 50(4): 396-401. DOI: 10.1016/j.neurad.2022.10.006.
[55]
SUN K, ZHU Y, CHAI W M, et al. Diffusion-weighted MRI-based virtual elastography and shear-wave elastography for the assessment of breast lesions[J]. J Magn Reson Imaging, 2024, 60(5): 2207-2213. DOI: 10.1002/jmri.29302.
[56]
DU Y N, WANG D W, LIU M H, et al. Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images[J]. J Cancer Res Ther, 2024, 20(2): 625-632. DOI: 10.4103/jcrt.jcrt_1796_23.
[57]
ZHOU W Y, ZHANG L L, ZHOU X, et al. The diagnostic performance of shear-wave elastography combined with ultrasound and magnetic resonance imaging in breast lesions: a single center retrospective study[J/OL]. Adv Clin Exp Med, 2025 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40748772/. DOI: 10.17219/acem/203584.
[58]
KAPETAS P, CLAUSER P, MILOS R I, et al. Microstructural breast tissue characterization: a head-to-head comparison of Diffusion Weighted Imaging and Acoustic Radiation Force Impulse elastography with clinical implications[J/OL]. Eur J Radiol, 2021, 143: 109926 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34438330/. DOI: 10.1016/j.ejrad.2021.109926.
[59]
GOTO M, LE BIHAN D, YOSHIDA M, et al. Adding a model-free diffusion MRI marker to BI-RADS assessment improves specificity for diagnosing breast lesions[J]. Radiology, 2019, 292(1): 84-93. DOI: 10.1148/radiol.2019181780.
[60]
WANG X Y, ZHANG Y, CHENG J L, et al. Microstructural diffusion MRI for differentiation of breast tumors and prediction of prognostic factors in breast cancer[J/OL]. Front Oncol, 2025, 15: 1498691 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40110196/. DOI: 10.3389/fonc.2025.1498691.
[61]
PATEL B K, PEPIN K, BRANDT K R, et al. Association of breast cancer risk, density, and stiffness: global tissue stiffness on breast MR elastography (MRE)[J]. Breast Cancer Res Treat, 2022, 194(1): 79-89. DOI: 10.1007/s10549-022-06607-2.
[62]
USUDA K, ISHIKAWA M, IWAI S, et al. Combination assessment of diffusion-weighted imaging and T2-weighted imaging is acceptable for the differential diagnosis of lung cancer from benign pulmonary nodules and masses[J/OL]. Cancers, 2021, 13(7): 1551 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/33800560/. DOI: 10.3390/cancers13071551.
[63]
DENG J, CAO Y W, LU Y, et al. Value of placental virtual magnetic resonance elastography and intravoxel incoherent motion-based diffusion and perfusion in predicting adverse outcomes of small-for-gestational-age infants[J/OL]. Insights Imaging, 2023, 14(1): 153 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37741945/. DOI: 10.1186/s13244-023-01503-9.
[64]
XU J L, MAO Y J, QU F F, et al. Detection of placental stiffness using virtual magnetic resonance elastography in pregnancies complicated by preeclampsia[J]. Arch Gynecol Obstet, 2024, 310(4): 2283-2289. DOI: 10.1007/s00404-024-07585-0.
[65]
ZHONG S X, AI C H, DING Y Y, et al. Combining multimodal diffusion-weighted imaging and morphological parameters for detecting lymph node metastasis in cervical cancer[J]. Abdom Radiol, 2024, 49(12): 4574-4583. DOI: 10.1007/s00261-024-04494-3.
[66]
JUNG H N, RYOO I, SUH S, et al. Differentiation of salivary gland tumours using diffusion-weighted image-based virtual MR elastography: a pilot study[J]. Dentomaxillofac Radiol, 2024, 53(4): 248-256. DOI: 10.1093/dmfr/twae010.
[67]
SOLAK M, KABA E, BEYAZAL M, et al. Parotid gland magnetic resonance elastography feasibility study: clinical diagnostic potential and future perspectives as a radiological palpation method[J/OL]. Diagnostics, 2025, 15(18): 2351 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/41008723/. DOI: 10.3390/diagnostics15182351.
[68]
ATAMANIUK V, CHEN J, OBRZUT M, et al. High-frequency shear wave MR elastography of parotid glands: custom driver design and preliminary results[J/OL]. Sci Rep, 2024, 14: 24496 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39424898/. DOI: 10.1038/s41598-024-75806-2.
[69]
TAN H, FAN Q J, YU Y, et al. Evaluation of infrapatellar fat pad elasticity in knee osteoarthritis using IVIM-DWI-based virtual MR elastography: repeatability and reproducibility analysis[J/OL]. BMC Musculoskelet Disord, 2025, 26(1): 402 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40264123/. DOI: 10.1186/s12891-025-08660-6.
[70]
SATAKE Y, IZUMI M, ASO K, et al. Association between infrapatellar fat pad ultrasound elasticity and anterior knee pain in patients with knee osteoarthritis[J/OL]. Sci Rep, 2023, 13: 20103 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37973859/. DOI: 10.1038/s41598-023-47459-0.
[71]
LI J, FU S, GONG Z, et al. MRI-based texture analysis of infrapatellar fat pad to predict knee osteoarthritis incidence[J]. Radiology, 2022, 304(3): 611-621. DOI: 10.1148/radiol.212009.
[72]
YANG F, WEI H R, LI X L, et al. The potential of model-free parameters derived from IVIM in evaluating pathological indicators and long-term survival in NPC[J]. J Magn Reson Imaging, 2025, 62(1): 73-86. DOI: 10.1002/jmri.29725.
[73]
YANG F, PENG W J, WEI H R, et al. Model-free parameters derived from intravoxel inherent motion combined with tumor aggressiveness indicators in predicting 5-year treatment outcome in NPC[J/OL]. Oral Oncol, 2025, 162: 107187 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39987710/ DOI: 10.1016/j.oraloncology.2025.107187.
[74]
WANG S N, JIN X X, BA Y W, et al. Differentiating rectal cancer grades using virtual magnetic resonance elastography and fractional order Calculus diffusion model[J/OL]. BMC Cancer, 2025, 25(1): 734 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40251492/. DOI: 10.1186/s12885-025-13983-7.
[75]
XUE M M, FENG H L, HE Y H, et al. Proliferation status assessment in rectal cancer with continuous-time random walk and virtual magnetic resonance elastography[J]. Acad Radiol, 2025, 32(10): 5878-5886. DOI: 10.1016/j.acra.2025.07.019.
[76]
TANG S X, FU C, CHEN H L, et al. Comparison of ZOOMit-DWI sequence and conventional DWI sequence in endometrial cancer[J]. J Cent South Univ Med Sci, 2023, 48(1): 76-83. DOI: 10.11817/j.issn.1672-7347.2023.220018.
[77]
GUMUS K Z, NICOLAS J, GOPIREDDY D R, et al. Deep learning algorithms for bladder cancer segmentation on multi-parametric MRI[J/OL]. Cancers, 2024, 16(13): 2348 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39001410/. DOI: 10.3390/cancers16132348.
[78]
KAMEL P, KANHERE A, KULKARNI P, et al. Optimizing acute stroke segmentation on MRI using deep learning: self-configuring neural networks provide high performance using only DWI sequences[J]. J Imaging Inform Med, 2025, 38(2): 717-726. DOI: 10.1007/s10278-024-00994-2.
[79]
SHI J J, LIN J, ZHOU X B, et al. Comparison of reduced and full field of view in diffusion-weighted MRI on image quality: a meta-analysis[J]. J Magn Reson Imaging, 2025, 61(2): 690-701. DOI: 10.1002/jmri.29487.
[80]
ZHU Y J, WANG P, WANG B Z, et al. Accelerated multi-b-value DWI using deep learning reconstruction: image quality improvement and microvascular invasion prediction in BCLC stage a hepatocellular carcinoma[J]. Acad Radiol, 2025, 32(7): 3924-3937. DOI: 10.1016/j.acra.2025.01.043.
[81]
MURPHY M C, MANDUCA A, TRZASKO J D, et al. Artificial neural networks for stiffness estimation in magnetic resonance elastography[J]. Magn Reson Med, 2018, 80(1): 351-360. DOI: 10.1002/mrm.27019.
[82]
HONG S J, KIM S H, YOO B, et al. Deep learning algorithm for tumor segmentation and discrimination of clinically significant cancer in patients with prostate cancer[J]. Curr Oncol, 2023, 30(8): 7275-7285. DOI: 10.3390/curroncol30080528.
[83]
ZHENG S, HE K, ZHANG L, et al. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging[J/OL]. Eur J Radiol, 2023, 165: 110912 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37290363/. DOI: 10.1016/j.ejrad.2023.110912.

PREV The assessment method for skeletal muscle fat infiltration: quantitative magnetic resonance imaging
NEXT Progress in clinical applications of MRI based on electromagnetic metamaterials
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn