Share:
Share this content in WeChat
X
Review
Progress in clinical applications of MRI based on electromagnetic metamaterials
LU Mengyu  ZHA Yunfei 

DOI:10.12015/issn.1674-8034.2026.01.033.


[Abstract] As an emerging technology, electromagnetic metamaterials can optimize MRI imaging performance without modifying the system hardware, while balancing safety and flexibility. Over the past two decades, electromagnetic metamaterials have achieved breakthrough progress in directions such as lightweighting, flexibility, and self-tuning, attracting increasing attention. However, most current studies only focus on some of their technical advantages in MRI, without incorporating comprehensive performance indicators. This makes it difficult to form a systematic understanding of the clinical application value of electromagnetic metamaterials, thus failing to provide adaptive references for multi-site diagnosis and treatment scenarios. This paper reviews the material properties and electromagnetic characterization of electromagnetic metamaterials, as well as their significant advantages in improving the local signal-to-noise ratio and resolution of MRI images, reducing specific absorption rate, enhancing radiofrequency field uniformity and magnetic field penetration depth, and supporting multi-nuclear imaging. It covers the latest research on anatomical sites including the head, heart, breast, abdomen, and limb joints. Additionally, this paper analyzes the limitations of current research, proposes future research directions, and provides a reference framework for the clinical application of electromagnetic metamaterials.
[Keywords] breast diseases;neurodegenerative diseases;wrist joint injuries;magnetic resonance imaging;electromagnetic metamaterials;radiofrequency field regulation;clinical diagnosis optimization

LU Mengyu   ZHA Yunfei*  

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Corresponding author: ZHA Y F, E-mail: zhayunfei999@126.com

Conflicts of interest   None.

Received  2025-09-20
Accepted  2025-12-08
DOI: 10.12015/issn.1674-8034.2026.01.033
DOI:10.12015/issn.1674-8034.2026.01.033.

[1]
LIU Y W, YIN H X, ZHANG Y, et al. Automatic detection of quality control performance of radio frequency coils based on ACR phantom[J]. Chin J Med Imag, 2025, 33(6): 601-606. DOI: 10.3969/j.issn.1005-5185.2025.06.006.
[2]
VACHHA B, HUANG S Y. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond[J/OL]. Eur Radiol Exp, 2021, 5(1): 35 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/34435246/. DOI: 10.1186/s41747-021-00216-2.
[3]
DARNELL D, TRUONG T K, SONG A W. Recent advances in radio-frequency coil technologies: flexible, wireless, and integrated coil arrays[J]. J Magn Reson Imag, 2022, 55(4): 1026-1042. DOI: 10.1002/jmri.27865.
[4]
QIAO L L. Discussion on the future development trend and potential innovations in MRI technology[J]. China Instrum, 2025(8): 80-83. DOI: 10.3969/j.issn.1005-2852.2025.08.017.
[5]
WEI C W, ZHANG X M, WEN Z Y. Research progress of ultra-high field magnetic resonance in cardiac imaging[J]. J Cardiovasc Pulm Dis, 2025, 44(7): 781-785. DOI: 10.3969/j.issn.1007-5062.2025.07.019.
[6]
BRUI E A, RAPACCHI S, BENDAHAN D, et al. Comparative analysis of SINC-shaped and SLR pulses performance for contiguous multi-slice fast spin-echo imaging using metamaterial-based MRI[J]. MAGMA, 2021, 34(6): 929-938. DOI: 10.1007/s10334-021-00937-w.
[7]
MAURYA S K, SCHMIDT R. A metamaterial-like structure design using non-uniformly distributed dielectric and conducting strips to boost the RF field distribution in 7 T MRI[J/OL]. Sensors (Basel), 2024, 24(7): 2250 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38610461/. DOI: 10.3390/s24072250.
[8]
ZHU X, WU K, ANDERSON S W, et al. Metamaterial-enabled hybrid receive coil for enhanced magnetic resonance imaging capabilities[J/OL]. Adv Sci (Weinh), 2025, 12(3): e2410907 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39587779/. DOI: 10.1002/advs.202410907.
[9]
DAS P, GUPTA J, SIKDAR D, et al. Aperture-patch sandwich metasurface for magnetic field enhancement in 1.5 T MRI[J/OL]. Magn Reson Imaging, 2023, 100: 1-9 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/36924809/. DOI: 10.1016/j.mri.2023.03.005.
[10]
WU K, ZHU X, ZHAO X G, et al. Conformal metamaterials with active tunability and self-adaptivity for magnetic resonance imaging[J/OL]. Research (Wash D C), 2024, 7: 0560 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39717463/. DOI: 10.34133/research.0560.
[11]
ISSA I, FORD K L, RAO M, et al. A magnetic resonance imaging surface coil transceiver employing a metasurface for 1.5T applications[J]. IEEE Trans Med Imag, 2020, 39(4): 1085-1093. DOI: 10.1109/TMI.2019.2942194.
[12]
CHI Z H, YI Y, WANG Y K, et al. Adaptive cylindrical wireless metasurfaces in clinical magnetic resonance imaging[J/OL]. Adv Mater, 2021, 33(40): e2102469 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/34402556/. DOI: 10.1002/adma.202102469.
[13]
VOROBYEV V, SHCHELOKOVA A, EFIMTCEV A, et al. Improving B1+ homogeneity in abdominal imaging at 3 T with light, flexible, and compact metasurface[J]. Magn Reson Med, 2022, 87(1): 496-508. DOI: 10.1002/mrm.28946.
[14]
KOLOSKOV V, BRINK W M, WEBB A G, et al. Flexible metasurface for improving brain imaging at 7T[J]. Magn Reson Med, 2024, 92(2): 869-880. DOI: 10.1002/mrm.30088.
[15]
KOLOSKOV V, PUCHNIN V, KORESHIN E, et al. Improved fetal magnetic resonance imaging using a flexible metasurface[J/OL]. NMR Biomed, 2025, 38(4): e70016 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39999971/. DOI: 10.1002/nbm.70016.
[16]
WEBB A, SHCHELOKOVA A, SLOBOZHANYUK A, et al. Novel materials in magnetic resonance imaging: high permittivity ceramics, metamaterials, metasurfaces and artificial dielectrics[J]. MAGMA, 2022, 35(6): 875-894. DOI: 10.1007/s10334-022-01007-5.
[17]
KSHETRIMAYUM R S. A brief intro to metamaterials[J]. IEEE Potentials, 2005, 23(5): 44-46. DOI: 10.1109/MP.2005.1368916.
[18]
MAURYA S K, SCHMIDT R. Shaping the RF transmit field in 7T MRI using a nonuniform metasurface constructed of short conducting strips[J]. ACS Appl Mater Interfaces, 2024, 16(36): 47284-47293. DOI: 10.1021/acsami.4c10402.
[19]
JANDALIYEVA A, PUCHNIN V, SHCHELOKOVA A. Volumetric wireless coils for breast MRI: a comparative analysis of metamaterial-inspired coil, Helmholtz coil, ceramic coil, and solenoid[J/OL]. J Magn Reson, 2024, 359: 107627 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38280267/. DOI: 10.1016/j.jmr.2024.107627.
[20]
RAN Y L, ZHANG Q, LI Z X, et al. Advances in MRI wireless coil[J]. Chin J Magn Reson Imag, 2025, 16(10): 229-234. DOI: 10.12015/issn.1674-8034.2025.10.036.
[21]
TANG W X, CUI T J. Development and applications of metamaterials[J]. Optoelectron Technol, 2024, 44(2): 85-93. DOI: 10.12450/j.gdzjs.202402001.
[22]
NURZED B, SAHA N, MILLWARD J M, et al. 3D metamaterials facilitate human cardiac MRI at 21.0 tesla: a proof-of-concept study[J/OL]. Sensors, 2025, 25(3): 620 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39943259/. DOI: 10.3390/s25030620.
[23]
KONG Y, ZHANG Q, LIU J X, et al. Design of carbon fiber/aramid fiber composite electromagnetic metamaterial and study on its absorbing properties[J]. Aerosp Mater Technol, 2025, 55(S1): 54-58. DOI: 10.12044/j.issn.1007-2330.2025.S1.008.
[24]
WANG Y K, CHI Z H, YI Y, et al. Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T[J/OL]. Magn Reson Imaging, 2025, 116: 110291 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39626829/. DOI: 10.1016/j.mri.2024.110291.
[25]
SOKOL S L, COLWELL Z A, KANDALA S K, et al. Flexible metamaterial wrap for improved head imaging at 3 T MRI with low-cost and easy fabrication method[J]. IEEE Antennas Wirel Propag Lett, 2022, 21(10): 2075-2079. DOI: 10.1109/lawp.2022.3190696.
[26]
DÜX D M, KOWAL R, KNULL L, et al. Flexible and wireless metasurface coils for knee and elbow MRI[J/OL]. Eur Radiol Exp, 2025, 9(1): 13 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39885091/. DOI: 10.1186/s41747-024-00549-8.
[27]
STOJA E, KONSTANDIN S, PHILIPP D, et al. Improving magnetic resonance imaging with smart and thin metasurfaces[J/OL]. Sci Rep, 2021, 11(1): 16179 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/34376748/. DOI: 10.1038/s41598-021-95420-w.
[28]
SAHA S, PRICCI R, KOUTSOUPIDOU M, et al. A smart switching system to enable automatic tuning and detuning of metamaterial resonators in MRI scans[J/OL]. Sci Rep, 2020, 10(1): 10042 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/32572087/. DOI: 10.1038/s41598-020-66884-z.
[29]
WU K, ZHAO X G, BIFANO T G, et al. Auxetics-inspired tunable metamaterials for magnetic resonance imaging[J/OL]. Adv Mater, 2022, 34(6): e2109032 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/34865253/. DOI: 10.1002/adma.202109032.
[30]
WU K, ZHU X, BIFANO T G, et al. Computational-design enabled wearable and tunable metamaterials via freeform auxetics for magnetic resonance imaging[J/OL]. Adv Sci (Weinh), 2024, 11(26): e2400261 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38659228/. DOI: 10.1002/advs.202400261.
[31]
SCHMIDT R, WEBB A. Metamaterial combining electric- and magnetic-dipole-based configurations for unique dual-band signal enhancement in ultrahigh-field magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2017, 9(40): 34618-34624. DOI: 10.1021/acsami.7b06949.
[32]
SEO Y, WANG Z J. MRI scanner-independent specific absorption rate measurements using diffusion coefficients[J]. J Appl Clin Med Phys, 2017, 18(4): 224-229. DOI: 10.1002/acm2.12095.
[33]
XU Z S, TANG L M, WANG Y. Analysis of the influence factors for MR imaging quality[J]. Inf Med Equip, 2003, 18(9): 31-34. DOI: 10.3969/j.issn.1674-1633.2003.09.012.
[34]
LI D L, SHAN L Q, CUI L, et al. Value of the 3.0-T DCE-MRI features in the assessment of the risk of axillary lymph node metastasis in breast cancer[J]. J Bengbu Med Coll, 2022, 47(11): 1582-1586. DOI: 10.13898/j.cnki.issn.1000-2200.2022.11.026.
[35]
ZHU H Q, SHEN N X, LI Y H, et al. Application of multi-NMR metabolic imaging in central nervous system[J]. Radiol Pract, 2024, 39(10): 1279-1285. DOI: 10.13609/j.cnki.1000-0313.2024.10.001.
[36]
LYU B, XU L, WANG X M, et al. Technological innovation and clinical practice driving high-quality development of cardiovascular CT and MRI[J]. Chin J Med Imag Technol, 2025, 41(8): 1223-1228. DOI: 10.13929/j.issn.1003-3289.2025.08.006.
[37]
LIU Y, XIAO X, KONG X Z, et al. Domino volumetric metamaterial resonator for very-low-field MRI[J]. Med Phys, 2025, 52(5): 2874-2886. DOI: 10.1002/mp.17726.
[38]
LI B B, XIE R B, SUN Z C, et al. Nonlinear metamaterials enhanced surface coil array for parallel magnetic resonance imaging[J/OL]. Nat Commun, 2024, 15(1): 7949 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/39261525/. DOI: 10.1038/s41467-024-52423-1.
[39]
MO Z G, CHE S, DU F, et al. A near-field coupling array enables parallel imaging and SNR gain in MRI[J/OL]. Adv Sci (Weinh), 2025, 12(37): e03481 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40692379/. DOI: 10.1002/advs.202503481.
[40]
CHEN H W, GUO L, LI M Y, et al. Metamaterial-inspired radiofrequency (RF) shield with reduced specific absorption rate (SAR) and improved transmit efficiency for UHF MRI[J]. IEEE Trans Biomed Eng, 2020, 68(4): 1178-1189. DOI: 10.1109/TBME.2020.3022884.
[41]
WU K, ZHU X, ANDERSON S W, et al. Wireless, customizable coaxially shielded coils for magnetic resonance imaging[J/OL]. Sci Adv, 2024, 10(24): eadn5195 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/38865448/. DOI: 10.1126/sciadv.adn5195.
[42]
FREIRE M J, MARQUÉS R, TORNERO J. Magnetoinductive metasurface of capacitively-loaded split rings for local field homogenization in a 7 T MRI birdcage: a simulation study[J/OL]. J Magn Reson, 2023, 357: 107586 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/37944423/. DOI: 10.1016/j.jmr.2023.107586.
[43]
LÓPEZ-MARTÍNEZ I N, LADD M E, SCHMIDT R, et al. Comparison of B1+ and SAR efficiency for a high-impedance metamaterial shield with different remote RF arrays at 7T MRI: a simulation study[J/OL]. Magn Reson Mater Phys Biol Med, 2025 [2025-09-19]. https://pubmed.ncbi.nlm.nih.gov/40931282/. DOI: 10.1007/s10334-025-01295-7.
[44]
CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J/OL]. Light Sci Appl, 2014, 3(10): e218 [2025-09-19]. https://www.nature.com/articles/lsa201499. DOI: 10.1038/lsa.2014.99.
[45]
LEI H, HU Q, YE T Y, et al. Deep learning-based design and performance validation of electromagnetic metamaterials[J]. Spacecr Environ Eng, 2025, 42(5): 468-476. DOI: 10.12126/see.2025068.
[46]
WANG J X, QIAO L, LV H B, et al. Deep transfer learning-based multi-modal digital twins for enhancement and diagnostic analysis of brain MRI image[J]. IEEE/ACM Trans Comput Biol Bioinform, 2023, 20(4): 2407-2419. DOI: 10.1109/TCBB.2022.3168189.

PREV Principles and clinical application advances of virtual magnetic resonance elastography based on DWI
NEXT Advances in time-dependent diffusion MRI for noninvasive prediction of tumor molecular biomarkers
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn