Share:
Share this content in WeChat
X
Review
Multinuclear magnetic resonance imaging in oncology: research progress
ZHOU Langping  LI Tian  CAO Ying  WANG Xiaoxia  ZHANG Jiuquan 

DOI:10.12015/issn.1674-8034.2026.01.035.


[Abstract] Magnetic resonance imaging (MRI), which is recognized for its high spatial resolution, excellent soft-tissue contrast, and absence of ionizing radiation, has become an essential tool in tumor diagnosis, staging, classification, treatment response evaluation, and prognosis assessment. As oncology diagnostics and therapeutics advance toward precision medicine, MRI technology is progressively evolving from macroscopic structural and functional imaging toward imaging at the microscopic cellular and metabolic levels. Multinuclear magnetic resonance can detect not only hydrogen (¹H)-the most abundant nucleus in the human body, but also other nuclei, such as phosphorus (³¹P), sodium (²³Na), and xenon (¹²⁹Xe), thereby overcoming the limitations of conventional single-nucleus MRI. This technique provides a novel approach and perspective into tumor characterization and management by integrating structural, functional, and metabolic information. This review systematically summarizes recent advances in multinuclear MRI (multi-NMR) for oncology applications, highlights its potential in elucidating tumor metabolic features and supporting clinical decision-making, and discusses key technical challenges and future directions. It aims to serve as a valuable reference for further research and clinical translation in this field.
[Keywords] multinuclear magnetic resonance imaging;molecular imaging;functional imaging;oncology;medical imaging diagnosis

ZHOU Langping1, 2   LI Tian2   CAO Ying1, 2   WANG Xiaoxia2   ZHANG Jiuquan2*  

1 School of Medicine, Chongqing University, Chongqing 400030, China

2 Department of Radiology, Chongqing University Cancer Hospital, Chongqing 400030, China

Corresponding author: ZHANG J Q, E-mail: zhangjq_radiol@163.com

Conflicts of interest   None.

Received  2025-11-07
Accepted  2026-01-04
DOI: 10.12015/issn.1674-8034.2026.01.035
DOI:10.12015/issn.1674-8034.2026.01.035.

[1]
SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1): 12-49. DOI: 10.3322/caac.21820.
[2]
SIMOES R V, HENRIQUES R N, OLESEN J L, et al. Deuterium metabolic imaging phenotypes mouse glioblastoma heterogeneity through glucose turnover kinetics[J/OL]. eLife, 2025, 13: RP10057 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40035743/. DOI: 10.7554/eLife.100570.
[3]
WEI Y, YANG C W, JIANG H Y, et al. Multi-nuclear magnetic resonance spectroscopy: state of the art and future directions[J/OL]. Insights Imaging, 2022, 13(1): 135 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/35976510/. DOI: 10.1186/s13244-022-01262-z.
[4]
DAI J Y, GOSSELINK M, VAN DER VELDEN T A, et al. An RF coil design to enable quintuple nuclear whole-brain MRI[J]. Magn Reson Med, 2023, 89(5): 2131-2141. DOI: 10.1002/mrm.29577.
[5]
ARPONEN O, WODTKE P, GALLAGHER F A, et al. Hyperpolarised (13)C-MRI using (13)C-pyruvate in breast cancer: a review[J/OL]. Eur J Radiol, 2023, 167: 111058 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37666071/. DOI: 10.1016/j.ejrad.2023.111058.
[6]
THULBORN K R, LU A M, ATKINSON I C, et al. Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors[J]. Neuroimaging Clin N Am, 2009, 19(4): 615-624. DOI: 10.1016/j.nic.2009.09.001.
[7]
CONTRERAS R G, TORRES-CARRILLO A, FLORES-MALDONADO C, et al. Na+/K(+)-ATPase: more than an electrogenic pump[J/OL]. Int J Mol Sci, 2024, 25(11): 6122 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38892309/. DOI: 10.3390/ijms25116122.
[8]
CHO N S, SANVITO F, THAKURIA S, et al. Multi-nuclear sodium, diffusion, and perfusion MRI in human gliomas[J]. J Neurooncol, 2023, 163(2): 417-427. DOI: 10.1007/s11060-023-04363-x.
[9]
SMITH T, CHAU M, SIMS J, et al. 23Na-MRI for breast cancer diagnosis and treatment monitoring: a scoping review[J/OL]. Bioengineering, 2025, 12(2): 158 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40001678/. DOI: 10.3390/bioengineering12020158.
[10]
SHARMA M, DEY U, DAS A S, et al. Anti-tumor potential of high salt in breast Cancer cell lines[J/OL]. Mol Biol Rep, 2024, 51(1): 1002 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39305332/. DOI: 10.1007/s11033-024-09925-4.
[11]
HUANG L, BAI J, ZONG R, et al. Sodium MRI at 7T for early response evaluation of intracranial tumors following stereotactic radiotherapy using the CyberKnife[J]. AJNR Am J Neuroradiol, 2022, 43(2): 181-187. DOI: 10.3174/ajnr.A7404.
[12]
BHATIA A, KLINE C, MADSEN P J, et al. Sodium MRI in pediatric brain tumors[J]. AJNR Am J Neuroradiol, 2025, 46(7): 1309-1317. DOI: 10.3174/ajnr.A8642.
[13]
RUDER A M, MOHAMED S A, HOESL M A U, et al. Radiosurgery-induced early changes in peritumoral tissue sodium concentration of brain metastases[J/OL]. PLoS One, 2024, 19(11): e0313199 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39495788/. DOI: 10.1371/journal.pone.0313199.
[14]
TAN J L, KALIA V, PAUTLER S E, et al. Different sodium concentrations of noncancerous and cancerous prostate tissue seen on MRI using an external coil[J/OL]. Radiol Adv, 2024, 1(3): umae023 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39574514/. DOI: 10.1093/radadv/umae023.
[15]
REGNERY S, BEHL N G R, PLATT T, et al. Ultra-high-field sodium MRI as biomarker for tumor extent, grade and IDH mutation status in glioma patients[J/OL]. Neuroimage Clin, 2020, 28: 102427 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/33002860/. DOI: 10.1016/j.nicl.2020.102427.
[16]
LEVENSON C W, MORGAN T J, TWIGG P D, et al. Use of MRI, metabolomic, and genomic biomarkers to identify mechanisms of chemoresistance in glioma[J]. Cancer Drug Resist, 2019, 2(3): 862-876. DOI: 10.20517/cdr.2019.18.
[17]
SHYMANSKAYA A, WORTHOFF W A, STOFFELS G, et al. Comparison of [(18)F] fluoroethyltyrosine PET and sodium MRI in cerebral gliomas: a pilot study[J]. Mol Imaging Biol, 2020, 22(1): 198-207. DOI: 10.1007/s11307-019-01349-y.
[18]
THOMAS C D, LUPU M, POYER F, et al. Increased PDT efficacy when associated with nitroglycerin: a study on retinoblastoma xenografted on mice[J/OL]. Pharmaceuticals, 2022, 15(8): 985 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/36015132/. DOI: 10.3390/ph15080985.
[19]
KURHANEWICZ J, VIGNERON D B, ARDENKJAER-LARSEN J H, et al. Hyperpolarized (13)C MRI: path to clinical translation in oncology[J]. Neoplasia, 2019, 21(1): 1-16. DOI: 10.1016/j.neo.2018.09.006.
[20]
DE LEON-OLIVA D, GONZÁLEZ-PRIETO P, DE CASTRO-MARTINEZ P, et al. Revisiting the biological role of the Warburg effect: Evolving perspectives on cancer metabolism[J/OL]. Pathol Res Pract, 2025, 273: 156151 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40743579/. DOI: 10.1016/j.prp.2025.156151.
[21]
KAPAPA T, KÖNIG R, COBURGER J, et al. Metabolic imaging as future technology and innovation in brain-tumour surgery: a systematic review[J/OL]. Curr Oncol, 2025, 32(11): 597 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/41294661/. DOI: 10.3390/curroncol32110597.
[22]
CHAUMEIL M M, BANKSON J A, BRINDLE K M, et al. New horizons in hyperpolarized (13)C MRI[J]. Mol Imaging Biol, 2024, 26(2): 222-232. DOI: 10.1007/s11307-023-01888-5.
[23]
LARSON P E Z, BERNARD J M L, BANKSON J A, et al. Current methods for hyperpolarized [1-(13)C] pyruvate MRI human studies[J]. Magn Reson Med, 2024, 91(6): 2204-2228. DOI: 10.1002/mrm.29875.
[24]
CHEN H Y, BOK R A, COOPERBERG M R, et al. Improving multiparametric MR-transrectal ultrasound guided fusion prostate biopsies with hyperpolarized (13) C pyruvate metabolic imaging: a technical development study[J]. Magn Reson Med, 2022, 88(6): 2609-2620. DOI: 10.1002/mrm.29399.
[25]
SRIRAM R, VAN CRIEKINGE M, SANTOS J D, et al. Non-invasive differentiation of benign renal tumors from clear cell renal cell carcinomas using clinically translatable hyperpolarized 13C pyruvate magnetic resonance[J]. Tomography, 2016, 2(1): 35-42. DOI: 10.18383/j.tom.2016.00106.
[26]
BARD-CHAPEAU E A, NGUYEN A T, RUST A G, et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model[J]. Nat Genet, 2014, 46(1): 24-32. DOI: 10.1038/ng.2847.
[27]
DÜWEL S, HUNDSHAMMER C, GERSCH M, et al. Imaging of pH in vivo using hyperpolarized (13)C-labelled zymonic acid[J/OL]. Nat Commun, 2017, 8: 15126 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/28492229/. DOI: 10.1038/ncomms15126.
[28]
AGGARWAL R, VIGNERON D B, KURHANEWICZ J. Hyperpolarized 1-[(13)C]-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer[J]. Eur Urol, 2017, 72(6): 1028-1029. DOI: 10.1016/j.eururo.2017.07.022.
[29]
KISHIMOTO S, BRENDER J R, CROOKS D R, et al. Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice[J/OL]. eLife, 2019, 8: e46312 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/31408004/. DOI: 10.7554/eLife.46312.
[30]
LEE C Y, SOLIMAN H, BRAGAGNOLO N D, et al. Predicting response to radiotherapy of intracranial metastases with hyperpolarized 13C MRI[J]. J Neurooncol, 2021, 152(3): 551-557. DOI: 10.1007/s11060-021-03725-7.
[31]
GOODWIN J S, TSAI L L, MWIN D, et al. In vivo detection of distal tumor glycolytic flux stimulated by hepatic ablation in a breast cancer model using hyperpolarized (13)C MRI[J/OL]. Magn Reson Imaging, 2021, 80: 90-97 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/33901585/. DOI: 10.1016/j.mri.2021.04.004.
[32]
CHEN H Y, DE KOUCHKOVSKY I, BOK R A, et al. Multivariate framework of metabolism in advanced prostate cancer using whole abdominal and pelvic hyperpolarized (13)C MRI-a correlative study with clinical outcomes[J/OL]. Cancers, 2025, 17(13): 2211 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40647509/. DOI: 10.3390/cancers17132211.
[33]
CHEN H Y, AGGARWAL R, BOK R A, et al. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study[J]. Prostate Cancer Prostatic Dis, 2020, 23(2): 269-276. DOI: 10.1038/s41391-019-0180-z.
[34]
CHEN L M, JIANG Y H, XIONG N, et al. Sensitive multichannel (19)F magnetic resonance imaging enabled by paramagnetic fluorinated ionic liquid-based probes[J]. ACS Nano, 2025, 19(9): 9061-9069. DOI: 10.1021/acsnano.4c17959.
[35]
TIROTTA I, DICHIARANTE V, PIGLIACELLI C, et al. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications[J]. Chem Rev, 2015, 115(2): 1106-1129. DOI: 10.1021/cr500286d.
[36]
GAO R Q, WANG E, PINEIRO V, et al. Perfluorohexane emulsions induce macrophage-stimulating effects through iNOS expression[J]. ACS Appl Bio Mater, 2025, 8(5): 4046-4054. DOI: 10.1021/acsabm.5c00191.
[37]
LEI L L, DONG Z, XU L, et al. Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation[J]. Theranostics, 2022, 12(14): 6207-6222. DOI: 10.7150/thno.75323.
[38]
SZCZĘCH M, HINZ A, ŁOPUSZYŃSKA N, et al. Polyaminoacid based core@shell nanocarriers of 5-fluorouracil: synthesis, properties and theranostics application[J/OL]. Int J Mol Sci, 2021, 22(23): 12762 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34884566/. DOI: 10.3390/ijms222312762.
[39]
CAO Y P, ZHOU X H, LIU X L, et al. High-sensitivity, low-field (19)F-MRI approach using high manganese ferrite concentrations[J]. Anal Chem, 2023, 95(28): 10572-10579. DOI: 10.1021/acs.analchem.3c00379.
[40]
LI Y N, CUI J, LI C L, et al. (19) F MRI nanotheranostics for cancer management: progress and prospects[J/OL]. ChemMedChem, 2022, 17(4): e202100701 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34951121/. DOI: 10.1002/cmdc.202100701.
[41]
KHAN A S, HARVEY R L, BIRCHALL J R, et al. Enabling clinical technologies for hyperpolarized (129) xenon magnetic resonance imaging and spectroscopy[J]. Angew Chem Int Ed, 2021, 60(41): 22126-22147. DOI: 10.1002/anie.202015200.
[42]
MUMMY D, ZHANG S, BECHTEL A, et al. Functional gas exchange measures on (129)Xe MRI and spectroscopy are associated with age, sex, and BMI in healthy subjects[J/OL]. Front Med, 2024, 11: 1342499 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38651062/. DOI: 10.3389/fmed.2024.1342499.
[43]
EDDY R L, XU G H, LEIPSIC J A, et al. Multi-modal pulmonary imaging: using complementary information from CT and hyperpolarized 129Xe MRI to evaluate lung structure-function[J/OL]. J Vis Exp, 2024(206): e66257 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38682932/. DOI: 10.3791/66257.
[44]
KIMURA A, UTSUMI S, SHIMOKAWA A, et al. Inflammation during lung cancer progression and ethyl pyruvate treatment observed by pulmonary functional hyperpolarized (129)Xe MRI in mice[J/OL]. Contrast Media Mol Imaging, 2021, 2021: 9918702 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34257627/. DOI: 10.1155/2021/9918702.
[45]
RADADIA N, PRIEL E, FRIEDLANDER Y, et al. Ventilation defect burden predicts lung cancer resection outcomes[J]. ERJ Open Res, 2025, 11(4): 1317-2024. DOI: 10.1183/23120541.01317-2024.
[46]
RADADIA N, FRIEDLANDER Y, PRIEL E, et al. Comparison of ventilation defects quantified by Technegas SPECT and hyperpolarized (129)Xe MRI[J/OL]. Front Physiol, 2023, 14: 1133334 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37234422/. DOI: 10.3389/fphys.2023.1133334.
[47]
ZHANG L, QIU M S, WANG R F, et al. Monitoring ROS responsive Fe(3)O(4)-based nanoparticle mediated ferroptosis and immunotherapy via (129)Xe MRI[J/OL]. Angew Chem Int Ed, 2024, 63(22): e202403771 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38551448/. DOI: 10.1002/anie.202403771.
[48]
ZENG Q B, GUO Q N, YUAN Y P, et al. Protocol for detecting substrates in living cells by targeted molecular probes through hyperpolarized (129)Xe MRI[J/OL]. STAR Protoc, 2022, 3(3): 101499 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/35776640/. DOI: 10.1016/j.xpro.2022.101499.
[49]
BITENCOURT A G V, BHOWMIK A, DE LACERDA MARCAL FILHO E F, et al. Deuterium MR spectroscopy: potential applications in oncology research[J/OL]. BJR Open, 2024, 6(1): tzae019 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39165295/. DOI: 10.1093/bjro/tzae019.
[50]
KAGGIE J D, KHAN A S, MATYS T, et al. Deuterium metabolic imaging and hyperpolarized (13)C-MRI of the normal human brain at clinical field strength reveals differential cerebral metabolism[J/OL]. Neuroimage, 2022, 257: 119284 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/35533826/. DOI: 10.1016/j.neuroimage.2022.119284.
[51]
CHANG M C, MALUT V R, MAHAR R, et al. Assessing cancer therapeutic efficacy in vivo using [(2)H(7)] glucose deuterium metabolic imaging[J/OL]. Sci Adv, 2025, 11(13): eadr0568 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40138413/. DOI: 10.1126/sciadv.adr0568.
[52]
BATSIOS G, TAGLANG C, TRAN M, et al. Deuterium metabolic imaging reports on TERT expression and early response to therapy in cancer[J]. Clin Cancer Res, 2022, 28(16): 3526-3536. DOI: 10.1158/1078-0432.CCR-21-4418.
[53]
MONTRAZI E T, SASSON K, AGEMY L, et al. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models[J/OL]. Sci Rep, 2023, 13(1): 19998 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37968574/. DOI: 10.1038/s41598-023-47301-7.
[54]
VELTIEN A, VAN ASTEN J, RAVICHANDRAN N, et al. Simultaneous recording of the uptake and conversion of glucose and choline in tumors by deuterium metabolic imaging[J/OL]. Cancers, 2021, 13(16): 4034 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34439188/. DOI: 10.3390/cancers13164034.
[55]
PRINZ D, BARTSCH S J, EHRET V, et al. Multiparametric magnetic resonance imaging of the breast: What can we expect from the future [J]. Radiologie, 2025, 65(3): 162-169. DOI: 10.1007/s00117-024-01390-1.
[56]
WAN J Y, GUO Y S, CHEN H B, et al. Application and development of Deuterium Metabolic Imaging in tumor glucose metabolism: visualization of different metabolic pathways[J/OL]. Front Oncol, 2023, 13: 1285209 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38090478/. DOI: 10.3389/fonc.2023.1285209.
[57]
MONTRAZI E T, BAO Q J, MARTINHO R P, et al. Deuterium imaging of the Warburg effect at sub-millimolar concentrations by joint processing of the kinetic and spectral dimensions[J/OL]. NMR Biomed, 2023, 36(11): e4995 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/37401393/. DOI: 10.1002/nbm.4995.
[58]
HORVAT-MENIH I, STEWART G D, GALLAGHER F A. Potential of metabolic MRI to address unmet clinical needs in localised kidney cancer[J/OL]. Cancers, 2025, 17(11): 1773 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/40507256/. DOI: 10.3390/cancers17111773.
[59]
SEELEN L W F, VAN DEN WILDENBERG L, VAN DER KEMP W J M, et al. Prospective of (31) P MR spectroscopy in hepatopancreatobiliary cancer: a systematic review of the literature[J]. J Magn Reson Imaging, 2023, 57(4): 1144-1155. DOI: 10.1002/jmri.28372.
[60]
GRAMS A E, MANGESIUS S, STEIGER R, et al. Changes in brain energy and membrane metabolism in glioblastoma following chemoradiation[J]. Curr Oncol, 2021, 28(6): 5041-5053. DOI: 10.3390/curroncol28060424.
[61]
ORLOVSKIY S, GUPTA P K, ROMAN J, et al. Lonidamine induced selective acidification and de-energization of prostate cancer xenografts: enhanced tumor response to radiation therapy[J/OL]. Cancers, 2024, 16(7): 1384 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/38611062/. DOI: 10.3390/cancers16071384.
[62]
GREINER J V, GLONEK T. ATP, the (31)P spectral modulus, and metabolism[J/OL]. Metabolites, 2024, 14(8): 456 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39195552/. DOI: 10.3390/metabo14080456.
[63]
SCHMITZ A M T, VELDHUIS W B, MENKE-PLUIJMERS M B E, et al. Preoperative indication for systemic therapy extended to patients with early-stage breast cancer using multiparametric 7-tesla breast MRI[J/OL]. PLoS One, 2017, 12(9): e0183855 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/28949967/. DOI: 10.1371/journal.pone.0183855.
[64]
TAYARI N, HEERSCHAP A, SCHEENEN T W J, et al. In vivo MR spectroscopic imaging of the prostate, from application to interpretation[J/OL]. Anal Biochem, 2017, 529: 158-170 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/28167072/. DOI: 10.1016/j.ab.2017.02.001.
[65]
WALCHHOFER L M, STEIGER R, RIETZLER A, et al. Phosphorous magnetic resonance spectroscopy to detect regional differences of energy and membrane metabolism in Naïve glioblastoma multiforme[J/OL]. Cancers, 2021, 13(11): 2598 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/34073209/. DOI: 10.3390/cancers13112598.
[66]
GUPTA P K, LI L Z, SINGH D K, et al. MRS and optical imaging studies of therapeutic response to combination therapy targeting BRAF/MEK in murine melanomas[J/OL]. Acad Radiol, 2025 [2025-11-06]. https://pubmed.ncbi.nlm.nih.gov/39984334/. DOI: 10.1016/j.acra.2025.01.035.
[67]
IANNIELLO C, MADELIN G, MOY L, et al. A dual-tuned multichannel bilateral RF coil for (1) H/(23) Na breast MRI at 7 T[J]. Magn Reson Med, 2019, 82(4): 1566-1575. DOI: 10.1002/mrm.27829.

PREV Advances in time-dependent diffusion MRI for noninvasive prediction of tumor molecular biomarkers
NEXT Multinuclear magnetic resonance imaging in oncology: research progress
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn