Share:
Share this content in WeChat
X
Review
Application of magnetic resonance mapping technology in the differentiation of left ventricular hypertrophic diseases
CHEN Yanfei  LIU Pengfei 

Cite this article as: Chen YF, Liu PF. Application of magnetic resonance mapping technology in the differentiation of left ventricular hypertrophic diseases. Chin J Magn Reson Imaging, 2020, 11(12): 1198-1200. DOI:10.12015/issn.1674-8034.2020.12.028.


[Abstract] Early diagnosis of left ventricular hypertrophy disease still faces many challenges, and it is difficult to implement effective treatment in the early stage of the lesion. Magnetic resonance is the gold standard for noninvasive diagnosis of myocardial disease. MR mapping technology can quantitatively analyze the myocardial characteristics of different diseases, and supplement some information about differential diagnosis. Combined with LGE (late gadolinium enhancement) technology, it greatly improves the early diagnosis efficiency of the disease, and has important risk assessment and treatment guidance value. In this paper, the characteristics of myocardial mapping parameters in patients with left ventricular hypertrophy were reviewed in order to provide necessary information for differential diagnosis.
[Keywords] left ventricular hypertrophy;magnetic resonance imaging;mapping technology;late gadolinium enhancement

CHEN Yanfei Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China

LIU Pengfei* Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China

*Correspondence to: Liu PF, E-mail: Pfeiliu@hotmail.com

Conflicts of interest   None.

Received  2020-06-19
Accepted  2020-08-04
DOI: 10.12015/issn.1674-8034.2020.12.028
Cite this article as: Chen YF, Liu PF. Application of magnetic resonance mapping technology in the differentiation of left ventricular hypertrophic diseases. Chin J Magn Reson Imaging, 2020, 11(12): 1198-1200. DOI:10.12015/issn.1674-8034.2020.12.028.

[1]
Nordin S, Dancy L, Moon JC, et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Cardiovasc Imaging, 2018, 34(4): 577-585. DOI: 10.1007/s10554-018-1320-6.
[2]
赵世华. 迎接心脏磁共振成像新技术挑战. 中国医学影像技术, 2017,33(8): 1125-1128. DOI: 10.13929/j.1003-3289.201707120.
[3]
Anderson L. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J, 2001, 22(23): 2171-2179. DOI: 10.1053/euhj.2001.2822.
[4]
Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 2014, 35(39): 2733-2779. DOI: 10.1093/eurheartj/ehu284.
[5]
Tsybouleva N, Zhang L, Chen S, et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 2004, 109(10): 1284-1291. DOI: 10.1161/01.cir.0000121426.43044.2b.
[6]
Takeda M, Amano Y, Tachi M, et al. MRI differentiation of cardiomyopathy showing left ventricular hypertrophy and heart failure: differentiation between cardiac amyloidosis, hypertrophic cardiomyopathy, and hypertensive heart disease. Japanese J Radiol, 2013, 31(10): 693-700. DOI: 10.1007/s11604-013-0238-0.
[7]
Chacko BR, Karur GR, Connelly KA, et al. Left ventricular structure and diastolic function by cardiac magnetic resonance imaging in hypertrophic cardiomyopathy. Indian Heart J, 2018, 70(1): 75-81. DOI: 10.1016/j.ihj.2016.12.021.
[8]
Nakamori S, Dohi K, Ishida M, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging, 2018, 11(1): 48-59. DOI: 10.1016/j.jcmg.2017.04.006.
[9]
Hinojar R, Varma N, Child N, et al. T1 mapping in discrimination of hypertrophic phenotypes: Hypertensive heart disease and hypertrophic cardiomyopathy clinical perspective. Circ Cardiovasc Imaging, 2015, 8(12): e003285. DOI: 10.1161/circimaging.115.003285.
[10]
Ho CY, Abbasi SA, Neilan TG, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging, 2013, 6(3): 415-422. DOI: 10.1161/circimaging.112.000333.
[11]
Puntmann VO, Jahnke C, Gebker R, et al. Usefulness of magnetic resonance imaging to distinguish hypertensive and hypertrophic cardiomyopathy. Am J Cardiology, 2010, 106(7): 1016-1022. DOI: 10.1016/j.amjcard.2010.05.036.
[12]
Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits?. J Cardiovascular Magn Reson, 2015, 17(1): 74. DOI: 10.1186/s12968-015-0176-3.
[13]
Ripley DP, Negrou K, Oliver JJ, et al. Aortic remodelling following the treatment and regression of hypertensive left ventricular hypertrophy: a cardiovascular magnetic resonance study. Clin Exper Hypertension, 2014, 37(4): 308-316. DOI: 10.3109/10641963.2014.960974.
[14]
Neisius U, Myerson L, Fahmy AS, et al. Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy. PLoS One, 2019, 14(8): e0221061. DOI: 10.1371/journal.pone.0221061.
[15]
Neisius U, El-Rewaidy H, Nakamori S, et al. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC: Cardiovasc Imaging, 2019, 12(10): 1946-1954. DOI: 10.1016/j.jcmg.2018.11.024.
[16]
Mavrogeni SI, Vartela V, Ntalianis A, et al. Cardiac amyloidosis: in search of the ideal diagnostic tool. Herz, 2019, DOI: . DOI: 10.1007/s00059-019-04871-5.
[17]
Wan K, Li W, Sun J, et al. Regional amyloid distribution and impact on mortality in light-chain amyloidosis: a T1 mapping cardiac magnetic resonance study. Amyloid, 2019, 26(1): 45-51. DOI: 10.1080/13506129.2019.1578742.
[18]
Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial edema and prognosis in amyloidosis. J Am College of Cardiol, 2018, 71(25): 2919-2931. DOI: 10.1016/j.jacc.2018.03.536.
[19]
Gallego-Delgado M, González-López E, Muñoz-Beamud F, et al. Extracellular volume detects amyloidotic cardiomyopathy and correlates with neurological impairment in transthyretin-familial amyloidosis. Revista Española de Cardiología (English Edition), 2016, 69(10): 923-930. DOI: 10.1016/j.rec.2016.02.027.
[20]
Nam BD, Kim SM, Jung HN, et al. Comparison of quantitative imaging parameters using cardiovascular magnetic resonance between cardiac amyloidosis and hypertrophic cardiomyopathy: inversion time scout versus T1 mapping. Inter J Cardiovasc Imaging, 2018, 34(11): 1769-1777. DOI: 10.1007/s10554-018-1385-2.
[21]
Khalique Z, Ferreira PF, Scott AD, et al. Diffusion tensor cardiovascular magnetic resonance in cardiac amyloidosis. Circ Cardiovasc Imaging, 2020, 13(5): e009901. DOI: 10.1161/circimaging.119.009901.
[22]
Frustaci A, Chimenti C, Doheny D, et al. Evolution of cardiac pathology in classic fabry disease: Progressive cardiomyocyte enlargement leads to increased cell death and fibrosis, and correlates with severity of ventricular hypertrophy. Inter J Cardiology, 2017, 248: 257-262. DOI: 10.1016/j.ijcard.2017.06.079.
[23]
Hanneman K, Karur GR, Wasim S, et al. Left ventricular hypertrophy and late gadolinium enhancement at cardiac MRI are associated with adverse cardiac events in fabry disease. Radiology, 2019, 294(1): 42-49. DOI: 10.1148/radiol.2019191385.
[24]
Nordin S, Kozor R, Medina-Menacho K, et al. Proposed stages of myocardial phenotype development in fabry disease. JACC: Cardiovasc Imaging, 2019, 12(8): 1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
[25]
Walter TC, Knobloch G, Canaan-Kuehl S, et al. Segment-by-segment assessment of left ventricular myocardial affection in Anderson-Fabry disease by non-enhanced T1-mapping. Acta Radiologica, 2017, 58(8): 914-921. DOI: 10.1177/0284185116675657.
[26]
Kozor R, Nordin S, Treibel TA, et al. Insight into hypertrophied hearts: a cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. Eur Heart J, 2016, 18(9): 1034-1040. DOI: 10.1093/ehjci/jew187.
[27]
Müntze J, Salinger T, Gensler D, et al. Treatment of hypertrophic cardiomyopathy caused by cardiospecific variants of Fabry disease with chaperone therapy. Eur Heart J, 2018, 39(20): 1861-1862. DOI: 10.1093/eurheartj/ehy072.
[28]
Nordin S, Kozor R, Vijapurapu R, et al. Myocardial storage, inflammation, and cardiac phenotype in fabry disease after one year of enzyme replacement therapy. Circ Cardiovasc Imaging, 2019, 12(12): e009430. DOI: 10.1161/CIRCIMAGING.119.009430
[29]
Bagwan IN, Hooper LV, Sheppard MN. Cardiac sarcoidosis and sudden death. The heart may look normal or mimic other cardiomyopathies. Virchows Archiv, 2011, 458(6): 671-678. DOI: 10.1007/s00428-010-1003-8.
[30]
Flamée L, Symons R, Degtiarova G, et al. Prognostic value of cardiovascular magnetic resonance in patients with biopsy-proven systemic sarcoidosis. Eur Radiol, 2020, 30(7): 3702-3710. DOI: 10.1007/s00330-020-06765-1.
[31]
Kaur D, Roukoz H, Shah M, et al. Impact of the inflammation on the outcomes of catheter ablation of drug-refractory ventricular tachycardia in cardiac sarcoidosis. J Cardiovasc Electrophysiol, 2020, 31(3): 612-620. DOI: 10.1111/jce.14341.
[32]
Crouser ED, Ruden E, Julian MW, et al. Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis. J Invest Med, 2016, 64(6): 1148-1150. DOI: 10.1136/jim-2016-000144.

PREV Application situation and progress of amide proton transfer imaging in central nervous system
NEXT Making concerted efforts to build a world-class journal
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn