Share:
Share this content in WeChat
X
REVIEW
Research status and progress of HIV-related neurological cognitive dysfunction syndrome based on MRI
GAO Yuxun  LI Hongjun 

Cite this article as: Gao YX, Li HJ. Research status and progress of HIV-related neurological cognitive dysfunction syndrome based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(1): 65-69. DOI:10.12015/issn.1674-8034.2021.01.014.


[Abstract] Human immunodeficiency virus (HIV), or acquired immunodeficiency syndrome (AIDS) virus, is a virus that causes defects in the human immune system. Combination antiretroviral therapy (cART) has transformed HIV from a rapidly fatal disease to a more manageable chronic disease. Therefore, the life expectancy of HIV-infected (HIV) individuals receiving cART is almost as long as that of HIV-uninfected (HIV-) individuals. After infection, HIV enters the brain and can cause HIV-related neurocognitive disease (HAND) after a period of time. Magnetic resonance imaging (MRI) techniques [including magnetic resonance spectroscopy (MRS), structural MRI (sMRI), diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI)] and positron emission tomography (PET) have been used in HIV individuals. This article will introduce in detail the application and research progress of various magnetic resonance imaging technologies and brain networks in HAND.
[Keywords] human immunodeficiency virus;combined antiretroviral therapy;cognitive impairment;magnetic resonance imaging;neuroimaging;brain network

GAO Yuxun   LI Hongjun*  

Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100071, China

*Corresponding author: Li HJ, E-mail: lihongjun00113@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the National Natural Science Found of China No. 61936013
Received  2020-10-15
Accepted  2020-11-30
DOI: 10.12015/issn.1674-8034.2021.01.014
Cite this article as: Gao YX, Li HJ. Research status and progress of HIV-related neurological cognitive dysfunction syndrome based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(1): 65-69. DOI:10.12015/issn.1674-8034.2021.01.014.

1
https://www.who.int/zh/news-room/fact-sheets/detail/hiv-aids. (世卫组织网站主页/媒体中心/实况报道/Detail, 艾滋病毒/艾滋病)
2
Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 2007, 69(18): 1789-1799. DOI: 10.1089/brain.2016.0457
3
Iro MA, Martin NG, Absoud M, et al. Intravenous immunoglobulin for the treatment of childhood encephalitis. Cochrane Database Syst Rev.2017, 2, 10(10): CD011367. DOI: 10.1002/14651858.CD011367.pub2
4
Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. Neurovirol, 2011, 17(1): 3-16. DOI: 10.1007/s13365-010-0006-1
5
Underwood J, Cole JH, Caan M, et al. Comorbidity in relation to AIDS (COBRA) collaboration. gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function. Clin Infect Dis, 2017, 1, 65(3): 422-432. DOI: 10.1093/cid/cix301
6
Heaton RK, Marcotte TD, Mindt MR, et al. The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc, 2004, 10(3): 317-331. DOI: 10.1017/S1355617704102130
7
Antonietta MM, Francesco C, Francesco G, et al. Incidental and underreported pleural plaques at chest CT: do not miss them: asbestos exposure still exists. Biomed Res Int, 2017, 2017: 6797826. DOI: 10.1155/2017/6797826
8
Hardie D, Smuts H. Human pegivirus-1 in the CSF of patients with HIV-associated neurocognitive disorder (HAND) may be derived from blood in highly viraemic patients. J Clin Virol, 2017: 58-61. DOI: 10.1016/j.jcv.2017.04.007
9
Farhadian SF, Mistry H, Kirchwey T, et al. Markers of CNS injury in adults living with HIV with CSF HIV not detected vs detected <20 copies/ml. Open Forum Infect Dis, 2019, 14, 6(12): ofz528. DOI: 10.1093/ofid/ofz528
10
Enose-Akahata Y, Azodi S, Smith BR, et al. Immunophenotypic characterization of CSF B cells in virus-associated neuroinflammatory diseases. PLoS Pathog, 2018, 30, 14(4): e1007042. DOI: 10.1371/journal.ppat.1007042
11
Israel SM, Hassanzadeh-Behbahani S, Turkeltaub PE, et al. Different roles of frontal versus striatal atrophy in HIV-associated neurocognitive disorders. Hum Brain Mapp, 2019, l, 40(10): 3010-3026. DOI: 10.1002/hbm.24577
12
Sanford R, Fernandez Cruz AL, Scott SC, et al. Regionallyspecific brainvolumetric and cortical thickness changes in HIV-infected patients in the HAART era. J Acquir Immune Defic Syndr, 2017, 74(5): 563-570. DOI: 10.1097/QAI.0000000000001294
13
Durazzo TC, Meyerhoff DJ. Psychiatric, demographic, and brain morphological predictors of relapse after treatment for an alcohol use disorder. Alcohol Clin Exp Res, 2017, 41(1): 107-116. DOI: 10.1111/acer.13267
14
Gawron N, Choiński M, Szymańska-Kotwica B, et al. Effects of age, HIV, and HIV-associated clinical factors on neuropsychological functioning and brain regional volume in HIV+ patients on effective treatment. J Neurovirol, 2019, 25(1): 9-21. DOI: 10.1007/s13365-018-0679-4
15
Kallianpur KJ, Gerschenson M, Mitchell BI, et al. Oxidative mitochondrial DNA damage in peripheral blood mononuclear cells is associated with reduced volumes of hippocampus and subcortical gray matter in chronically HIV-infected patients. Mitochondrion, 2016, 28: 8-15. DOI: 10.1016/j.mito.2016.02.006
16
Chiang MC, Dutton RA, Hayashi KM, et al. 3D pattern of brain atrophy in HIV/AIDS visualized using tensorbased morphometry. Neuroimage, 2007, 34(1): 44-60. DOI: 10.1016/j.neuroimage.2006.08.030
17
Li J, Gao L, Wen Z, et al. Structural covariance of gray matter volume in HIV vertically infected adolescents. Sci Rep, 2018, 19, 8(1): 1182. DOI: 10.1038/s41598-018-19290-5
18
Bala J, Chinnapaiyan S, Dutta RK, et al. Aptamers in HIV research diagnosis and therapy. RNA Biol, 2018 Mar 4, 15(3): 327-337. DOI: 10.1080/15476286.2017.1414131
19
Ferretti F, De Zan V, Gerevini S, et al. Relapse of symptomatic cerebrospinal fluid HIV escape. Curr HIV/AIDS Rep, 2020, 17(5): 522-528. DOI: 10.1007/s11904-020-00526-x
20
Van den Hof M, Ter Haar AM, et al. Brain structure of perinatally HIV-infected patients on long-term treatment: a systematic review. Neurol Clin Pract, 2019, 9(5): 433-442. DOI: 10.1212/CPJ.0000000000000637
21
Sanford R, Fernandez Cruz AL, Scott SC, et al. Regionally specific brain volumetric and cortical thickness changes in HIV-infected patients in the HAART era. J Acquir Immune Defic Syndr, 2017, 15, 74(5): 563-570. DOI: 10.1097/QAI.0000000000001294
22
O'Connor EE, Zeffiro TA, Zeffiro TA. Brain structural changes following HIV infection: Meta-analysis. AJNR Am J Neuroradiol, 2018, 39(1): 54-62. DOI: 10.3174/ajnr.A5432
23
Sanford R, Fernandez Cruz AL, Scott SC, et al. Regionally specific brain volumetric and cortical thickness changes in HIV-infected patients in the HAART era. J Acquir Immune Defic Syndr, 2017, 74(5): 563-570. DOI: 10.1097/QAI.0000000000001294
24
Becker JT, Maruca V, Kingsley LA, et al. Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology, 2012, 54(2): 113-121. DOI: 10.1007/s00234-011-0854-2
25
Sarma MK, Nagarajan R, Keller M A, et al. Regional brain gray and white matter changes in perinatally HIV-Infected adolescents. Neuroimage Clin, 2014, 4(C): 29-34. DOI: 10.1016/j.nicl.2013.10.012
26
Cohen S, Caan MW, Mutsaerts HJ, et al. Cerebral injury in perinatally HIV-infected children compared to matched healthy controls. Neurology, 2016, 86(1): 19-27. DOI: 10.1212/WNL.0000000000002209
27
Guha A, Brier MR, Ortega M, et al. Topographies of cortical and subcortical volume loss in HIV and aging in the cART era. J Acquir Immune Defic Syndr, 2016, 73(4): 374-383. DOI: 10.1097/QAI.0000000000001111
28
Clifford KM, Samboju V, Cobigo Y, al er. Progressive brain atrophy despite persistent viral suppression in HIV patients older than 60 years. J Acquir Immune Defic Syndr, 76(3): 289-297. DOI: 10.1097/QAI.0000000000001489
29
Pfefferbaum A, Rosenbloom MJ, Sassoon SA, et al. Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry, 2012, 72(5): 361-370. DOI: 10.1016/j.biopsych.2012.02.018
30
Ances BM, Hammoud DA. Neuroimaging of HIV-associated neurocognitive disorders (HAND). Curr Opin HIV AIDS, 2014, 9(6): 545-551. DOI: 10.1097/COH.0000000000000112
31
Ikuta T, Del Arco A, Karlsgodt KH. White matter integrity in the fronto-striatal accumbofrontal tract predicts impulsivity. Brain Imaging Behav, 2018, 12(5): 1524-1528. DOI: 10.1007/s11682-017-9820-x.
32
Zamudio-Rodríguez A, Aguilar-Navarro S, Avila-Funes JA. Cognitive impairment among older adults living with HIV/AIDS and frailty. Gac Med Mex, 2017, 153(5): 598-607. DOI: 10.24875/GMM.17002875.
33
Patel S, Parikh NU, Aalinkeel R, et al. United States National Trends in Mortality, Length of Stay (LOS) and Associated Costs of Cognitive Impairment in HIV Population from 2005 to 2014. AIDS Behav, 2018, 22(10): 3198-3208. DOI: 10.1007/s10461-018-2128-z
34
Yin B, Li DD, Huang H, et al. Longitudinal changes in diffusion tensor imaging following mild traumatic brain injury and correlation with outcome. Front Neural Circuits, 2019, 7, 13: 28. DOI: 10.3389/fncir.2019.00028
35
Karmacharya S, Gagoski B, Ning L, et al. Advanced diffusion imaging for assessing normal white matter development in neonates and characterizing aberrant development in congenital heart disease. Neuroimage Clin, 2018, 1, 19: 360-373. DOI: 10.1016/j.nicl.2018.04.032
36
Papadelis C, Ahtam B, Feldman HA, et al. Altered white matter connectivity associated with intergyral brain disorganization in hemiplegic cerebral palsy. Neuroscience, 2019, 10, 399: 146-160. DOI: 10.1016/j.neuroscience.2018.12.028
37
Liang HJ, O'Connor EE, Ernst T, et al. Greater Sensorimotor Deficits and Abnormally Lower Globus Pallidus Fractional Anisotropy in HIV+ Women than in HIV+ Men. J Neuroimmune Pharmacol, 2020. [ DOI: ] DOI: 10.1007/s11481-020-09915-w
38
Oh SW, Shin NY, Choi JY, et al. Altered white matter integrity in human immunodeficiency virus-associated neurocognitive disorder: a tract-based spatial statistics study. Korean J Radiol, 2018, 19(3): 431-442. DOI: 10.3348/kjr.2018.19.3.431
39
Lin F, Zhao B, Wu J, et al. Risk factors for worsened muscle strength after the surgical treatment of arteriovenous malformations of the eloquent motor area. J Neurosurg, 2016, 125(2): 289-98. DOI: 10.3171/2015.6.JNS15969
40
Gongvatana A, Cohen RA, Correia S, et al. Clinical contributors to cerebral white matter integrity in HIV-infected individuals. J Neurovirol, 2011, 17(5): 477-486. DOI: 10.1007/s13365-011-0055-0
41
Wright PW, Heaps JM, Shimony JS, et al. The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS, 2012, 26(12): 1501-1508. DOI: 10.1097/QAD.0b013e3283550bec
42
Hagmann P, Kurant M, Gigandet X, et al. Mapping human whole-brain structural networks with diffusion MRI. PLoS One, 2007, 2(7): e597. DOI: 10.1371/journal.pone.0000597
43
Baker LM, Cooley SA, Cabeen RP, et al. Topological organization of whole-brain white matter in HIV infection. Brain Connectivity, 2017, 7(2): 115-122. DOI: 10.1089/brain.2016.0457
44
Jahanshad N, Valcour VG, Nir TM, et al. Disrupted brain networks in the aging HIV+ population. Brain Connect, 2012, 2(6): 335-44. DOI: 10.1089/brain.2012.0105-Rev
45
Hakkers CS, Arends JE, Barth RE, et al. Review of functional MRI in HIV: effects of aging and medication. J Neurovirol, 2017, 23(1): 20-32. DOI: 10.1007/s13365-016-0483-y
46
Chang L, Speck O, Miller EN, et al. Neural correlates of attention and working memory deficits in HIV patients. Neurology, 2001, 57(6): 1001-1007. DOI: 10.1212/wnl.57.6.1001
47
Chaganti JR, Heinecke A, Gates TM, et al. Functional connectivity in virally suppressed patients with HIV-associated neurocognitive disorder: a resting-state analysis. AJNR Am J Neuroradiol, 2017, 38(8): 1623-1629. DOI: 10.3174/ajnr.A5246
48
Bak Y, Jun S, Choi JY, et al. Altered intrinsic local activity and cognitive dysfunction in HIV patients: a resting-state fMRI study. PLoS One, 2018, 29, 13(11): e0207146. DOI: 10.1371/journal.pone.0207146
49
Thomas JB, Brier MR, Snyder AZ, et al. Pathways to neurodegeneration: effects of HIV and aging on resting-state functional connectivity. Neurology, 2013, 80(13): 1186-1193. DOI: 10.1212/WNL.0b013e318288792b
50
Ernst T, Yakupov R, Nakama H, et al. Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol, 2009, 65(3): 316-325. DOI: 10.1002/ana.21594
51
Salvador R, Suckling J, Coleman MR, et al. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex, 2005, 15(9): 1332-1342. DOI: 10.1093/cercor/bhi016
52
Chang L, Tomasi D, Yakupov R, et al. Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol, 2004, 56(2): 259-272. DOI: 10.1002/ana.20190
53
Cysique LA, Moffat K, Moore DM, et al. HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PloS One, 2013, 8(4): e61738. DOI: 10.1371/journal.pone.0061738.
54
Lentz MR, Kim WK, Kim H, et al. Alterations in brain metabolism during the first year of HIV infection. J Neurovirol, 2011, 17(3): 220-229. DOI: 10.1007/s13365-011-0030-9
55
Descamps M, Hyare H, Stebbing J, et al. Magnetic resonance imaging and spectroscopy of the brain in HIV disease. J HIV Ther, 2008, 13(3): 55-58.
56
Valcour V, Chalermchai T, Sailasuta N, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis, 2012, 206(2): 275-282. DOI: 10.1093/infdis/jis326
57
Cardenas VA, Meyerhoff DJ, Studholme C, et al. Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol, 2009, 15(4): 324-333. DOI: 10.1080/13550280902973960
58
Chang L, Ernst T, Leonido-Yee M, et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology, 1999, 53(4): 782-789. DOI: 10.1212/wnl.53.4.782
59
Tarasow E, Wiercinska-Drapalo A, Jaroszewicz J, et al. Antiretroviral therapy and its influence on the stage of brain damage in patients with HIV- 1H MRS evaluation. Med Sci Monit, 2004, 10 (Suppl 3): 101-106. DOI: 10.1021/jo00421a007
60
Fadel JJ, Bahr GM, Echtay KS. Absence of effect of the antiretrovirals Duovir and Viraday on mitochondrial bioenergetics. J Cell Biochem, 2018, 119(12): 10384-10392. DOI: 10.1002/jcb.27384
61
Dwyer R, Wenhui L, Cysique L, et al. Symptoms of depression and rates of neurocognitive impairment in HIV positive patients in Beijing, China. J Affect Disord, 2014, 162: 89-95. DOI: 10.1016/j.jad.2014.03.038
62
Holt JL, Kraft-Terry SD, Chang L. Neuroimaging studies of the aging HIV-1-infected brain. Journal of neurovirology, 2012, 18(4): 291-302. DOI: 10.1007/s13365-012-0114-1
63
Ernst T, Chang L, Arnold S. Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage, 2003, 19(4): 1686-1693. DOI: 10.1016/S1053-8119(03)00232-5
64
Alakkas A, Ellis RJ, Watson CW, et al. White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol, 25(1): 32-41. DOI: 10.1007/s13365-018-0682-9
65
Budka H. Neuropathology of human immunodeficiency virus infection. Brain Pathol, 1991, 1(3): 163-175. DOI: 10.1111/j.1750-3639.1991.tb00656.x
66
Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 2001, 56(3): M146-M156. DOI: 10.1093/gerona/56.3.m146
67
Luckett P, Paul RH, Navid J, et al. Deep learning analysis of cerebral blood flow to identify cognitive impairment and frailty in persons living with HIV. J Acquir Immune Defic Syndr, 2019, 82(5): 496-502. DOI: 10.1097/QAI.0000000000002181

PREV MRI diagnosis of cervical synovial sarcoma: one case report
NEXT Research progress of diffusion magnetic resonance imaging in mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn