Share:
Share this content in WeChat
X
REVIEW
Progress in magnetic resonance imaging application of acute muscle strain
LIAO Hongli  DAI Lisong  ZHOU Hongmei  XU Xiangyang 

Cite this article as: Liao HL, Dai LS, Zhou HM, et al. Progress in magnetic resonance imaging application of acute muscle strain[J]. Chin J Magn Reson Imaging, 2021, 12(1): 121-124. DOI:10.12015/issn.1674-8034.2021.01.030.


[Abstract] Acute muscle strain is defined as an acute indirect muscle injury and is common in daily life. In clinical practice, it is difficult to accurately diagnose based on symptoms and physical examination. Conventional magnetic resonance imaging (MRI) has high soft tissue resolution and is critical for the diagnosis and prognosis evaluation of acute muscle strain. Novel MRI techniques developed in recent years, including muscle MR elastography (MRE), T2 mapping, magnetic resonance diffusion weighted imaging (DWI), diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), make it possible to observe the micro structure of strained muscle and provide quantitative and objective evidence for the diagnosis of acute muscle strain. This article reviews the various MRI techniques for acute muscle strain.
[Keywords] acute muscle strain;magnetic resonance imaging;magnetic resonance elastography;T2 mapping;diffusion weighted imaging;diffusion tensor imaging;magnetic resonance spectroscopy

LIAO Hongli   DAI Lisong   ZHOU Hongmei   XU Xiangyang*  

Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China

*Corresponding author: Xu XY, E-mail: xuxy169@hotmail.com

Conflicts of interest   None.

Received  2020-09-06
Accepted  2020-11-28
DOI: 10.12015/issn.1674-8034.2021.01.030
Cite this article as: Liao HL, Dai LS, Zhou HM, et al. Progress in magnetic resonance imaging application of acute muscle strain[J]. Chin J Magn Reson Imaging, 2021, 12(1): 121-124. DOI:10.12015/issn.1674-8034.2021.01.030.

1
Järvinen TA, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J, 2014, 24, 3(4): 337-345. DOI: 10.1123/jsr.2016-0107
2
Sherry MA, Johnston TS, Heiderscheit BC. Rehabilitation of acute hamstring strain injuries. Clin Sports Med, 2015, 34(2): 263-284. DOI: 10.1016/j.csm.2014.12.009
3
Knudsen AB, Larsen M, Mackey AL, et al. The human myotendinous junction: an ultrastructural and 3D analysis study. Scand J Med Sci Sports, 2015, 25(1): e116-e123. DOI: 10.1111/sms.12221
4
Flores DV, Mejía Gómez C, Estrada-Castrillón M, et al. MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. Radiographics, 2018, 38(1): 124-148. DOI: 10.1148/rg.2018170072
5
Crema MD, Yamada AF, Guermazi A, et al. Imaging techniques for muscle injury in sports medicine and clinical relevance. Curr Rev Musculoskelet Med, 2015, 8(2): 154-61. DOI: 10.1007/s12178-015-9260-4
6
Thierfelder KM, Gerhardt JS, Gemescu IN, et al. Imaging of hip and thigh muscle injury: a pictorial review. Insights Imaging, 2019, 15, 10(1): 20. DOI: 10.1186/s13244-019-0702-1
7
Rubin DA. Imaging diagnosis and prognostication of hamstring injuries. Am J Roentgenol, 2012, 199(3): 525-533. DOI: 10.2214/AJR.12.8784
8
Mendiguchia J, Alentorn-Geli E, Idoate F, et al. Rectus femoris muscle injuries in football: a clinically relevant review of mechanisms of injury, risk factors and preventive strategies. Br J Sports Med, 2013, 47(6): 359-366. DOI: 10.1136/bjsports-2012-091250
9
Wang XY, Yang ZH, Zhou C. MR elastography and its clinical application. Chin J of Med Imaging, 2013, 21(5): 392-394. DOI: 10.3969/j.issn.1005-5185.2013.05.023
10
Kennedy P, Macgregor LJ, Barnhill E, et al. MR elastography measurement of the effect of passive warmup prior to eccentric exercise on thigh muscle mechanical properties. J Magn Reson Imaging, 2017, 46(4): 1115-1127. DOI: 10.1002/jmri.25642
11
Ito D, Numano T, Mizuhara K, et al. A new technique for MR elastography of the supraspinatus muscle: a gradient-echo type multi-echo sequence. Magn Reson Imaging, 2016, 34(8): 1181-1188. DOI: 10.1016/j.mri.2016.06.003
12
Schrank F, Warmuth C, Görner S, et al. Real-time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn Reson Med, 2020, 84(1): 103-114. DOI: 10.1002/mrm.28095
13
Li WW, Chen J. Application of diffusion tensor imaging and T2 mapping in acute anterior cruciate ligament and knee cartilage injury. J Diagn Imaging Int Radiol, 2019, 28(6): 427-432.
14
Pei QQ. Research of application value of MR T2 mapping in rotator cuff injury. GanSu University of Chinses Medicine. 2018.
15
Guermazi A, Roemer FW, Robinson P, et al. Imaging of muscle injuries in sports medicine: sports imaging series. Radiology, 2017, 285(3): 1063. DOI: 10.1148/radiol.2017174038
16
Esposito A, Campana L, Palmisano A, et al. Magnetic resonance imaging at 7T reveals common events in age-related sarcopenia and in the homeostatic response to muscle sterile injury. PLoS One, 2013, 8(3): e59308. DOI: 10.1371/journal.pone.0059308
17
Nocerino EA, Aliprandi A, Tavana R, et al. Evaluation of muscle tears in professional athletes using diffusion-weighted imaging and apparent diffusion coefficient: preliminary results. Acta Biomed, 2019, 90(3): 238-244. DOI: 10.23750/abm.v90i3.7157
18
Lo HC, Hung ST, Kuo DP, et al. Quantitative diffusion-weighted magnetic resonance imaging for the diagnosis of partial-thickness rotator cuff tears. J Shoulder Elbow Surg, 2016, 25(9): 1433-1441. DOI: 10.1016/j.jse.2016.01.020
19
Khoo MM, Tyler PA, Saifuddin A, et al. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol, 2011, 40(6): 665-681. DOI: 10.1007/s00256-011-1106-6
20
Hespel AM, Cole RC. Advances in high-field MRI. Vet Clin North Am Small Anim Pract, 2018, 48(1): 11-29. DOI: 10.1016/j.cvsm.2017.08.002
21
Zeng PE, Zhou Y, Liu JY. Research advances of functional MRI in evaluation of muscle injury. Int J Med Radiol, 2019, 42(2): 189-192.
22
Froeling M, Oudeman J, Strijkers GJ, et al. Muscle changes detected with diffusion-tensor imaging after long-distance running. Radiology, 2015, 274(2): 548-562. DOI: 10.1148/radiol.14140702
23
Cermak NM, Noseworthy MD, Bourgeois JM, et al. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve, 2012, 46(1): 42-50. DOI: 10.1002/mus.23276
24
Li P. Magnetic resonance diffusion tensor imaging and biomechanical characteristics of skeletal muscle injury in different periods. Chengdu Sport University. 2018.
25
Oudeman J, Nederveen AJ, Strijkers GJ, et al. Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J Magn Reson Imaging, 2016, 43(4): 773-788. DOI: 10.1002/jmri.25016
26
Longwei X. Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle. Muscles Ligaments Tendons J, 2012, 2(1): 19-24.
27
Kalia V, Leung DG, Sneag DB , et al. Advanced MRI techniques for muscle imaging. Semin Musculoskelet Radiol, 21(4): 459-469. DOI: 10.1055/s-0037-1604007
28
Moll K, Gussew A, Hein C, et al. Combined spiroergometry and 31 P-MRS of human calf muscle during high-intensity exercise. NMR Biomed, 2017, 30(7). DOI: . DOI: 10.1002/nbm.3723
29
Kong HJ, Gao F, Wu JJ, et al. Advances in medical imaging of sports injury. J Beijing Sport University, 2018, 41(4): 61-74.
30
Kerkhoffs GM, van Es N, Wieldraaijer T, et al. Diagnosis and prognosis of acute hamstring injuries in athletes. Knee Surg Sports Traumatol Arthrosc, 2013, 21(2): 500-509. DOI: 10.1007/s00167-012-2055-x
31
Wangensteen A, Guermazi A, Tol JL, et al. New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol, 2018, 28(8): 3532-3541. DOI: 10.1007/s00330-017-5125-0
32
Ekstrand J, Lee JC, Healy JC. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br J Sports Med, 2016, 50(12): 738-743. DOI: 10.1136/bjsports-2016-095974
33
Pollock N, James SL, Lee JC, et al. British athletics muscle injury classification: a new grading system. Br J Sports Med, 2014, 48(18): 1347-1351. DOI: 10.1136/bjsports-2013-093302
34
Chan O, Del Buono A, Best TM, et al. Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc, 2012, 20(11): 2356-2362. DOI: 10.1007/s00167-012-2118-z
35
Pollock N, Patel A, Chakraverty J, et al. Time to return to full training is delayed and recurrence rate is higher in intratendinous ('c') acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med, 2016, 50(5): 305-310. DOI: 10.1136/bjsports-2015-094657
36
Waterworth G, Wein S, Gorelik A,et al. MRI assessment of calf injuries in Australian Football League players: findings that influence return to play. Skeletal Radiol, 2017, 46(3): 343-350. DOI: 10.1007/s00256-016-2564-7
37
van der Made AD, Almusa E, Whiteley R, et al. Intramuscular tendon involvement on MRI has limited value for predicting time to return to play following acute hamstring injury. Br J Sports Med, 2018, 52(2): 83-88. DOI: 10.1136/bjsports-2017-097659
38
Entwisle T, Ling Y, Splatt A, et al. Distal musculotendinous T Junction injuries of the biceps femoris: an MRI case review. Orthop J Sports Med, 2017, 5(7): 2325967117714998. DOI: . DOI: 10.1177/2325967117714998
39
Prakash A, Entwisle T, Schneider M, et al. Connective tissue injury in calf muscle tears and return to play: MRI correlation. Br J Sports Med, 2018, 52(14): 929-933. DOI: 10.1136/bjsports-2017-098362

PREV Application progress of MRI in diagnosis and treatment of discoid meniscus
NEXT 3D-ASL assessment of cerebral blood flow changes in chronic stroke patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn