Share:
Share this content in WeChat
X
REVIEW
Progresses of structural and functional MRI in predicting post-concussion syndrome
HUANG Wenjing  FAN Fengxian  ZHANG Pengfei  WANG Jun  ZHANG Jing 

Cite this article as: Huang WJ, Fan FX, Zhang PF, et al. Progresses of structural and functional MRI in predicting post-concussion syndrome[J]. Chin J Magn Reson Imaging, 2021, 12(2): 94-97. DOI:10.12015/issn.1674-8034.2021.02.023.


[Abstract] Mild traumatic brain injury (mTBI) is the most common type of brain injury. After an accident, patients have short-term loss of consciousness, amnesia and mental state changes. Most patients' symptoms recovered in a short time, while some patients' discomfort persisted and developed into post-concussion syndrome (PCS). The appearance of PCS seriously affects patients' daily work and life, but the pathophysiological mechanism of PCS is still unclear. With the development of advanced MRI technology, more and more researches have explored the brain microstructure and functional changes of mTBI, discussed the mechanism of PCS and predicted PCS.
[Keywords] mild traumatic brain injury;post-concussion syndrome;magnetic resonance imaging;brain function

HUANG Wenjing1, 2   FAN Fengxian1, 2   ZHANG Pengfei1, 2   WANG Jun1, 2   ZHANG Jing1*  

1 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

2 The Second Clinical Medicine College of Lanzhou University, Lanzhou 730000, China

Zhang J, E-mail: lztong2001@163.com

Conflicts of interest   None.

ACKNOWLEDGENTS This work was part of National Natural Science Foundation of China (No. 8196070049); Lanzhou University Second Hospital "Cuiying Technology Innovation Plan" Applied Basic Research Project (No. CY2018-MS02).
Received  2020-09-10
Accepted  2021-01-11
DOI: 10.12015/issn.1674-8034.2021.02.023
Cite this article as: Huang WJ, Fan FX, Zhang PF, et al. Progresses of structural and functional MRI in predicting post-concussion syndrome[J]. Chin J Magn Reson Imaging, 2021, 12(2): 94-97. DOI:10.12015/issn.1674-8034.2021.02.023.

1
Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury[J]. J Rehabil Med, 2004, 43(Suppl): 28-60. DOI: 10.1080/16501960410023732.
2
Lu L, Wei X, Li M, et al. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury[J]. Neurol India, 2014, 62(5): 487-491. DOI: 10.4103/0028-3886.144434.
3
Lagarde E, Salmi LR, Holm LW, et al. Association of symptoms following mild traumatic brain injury with posttraumatic stress disorder vs postconcussion syndrome[J]. JAMA psychiatry, 2014, 71(9): 1032-1040. DOI: 10.1001/jamapsychiatry.2014.666.
4
Sussman D, da Costa L, Chakravarty MM, et al. Concussion induces focal and widespread neuromorphological changes[J]. Neurosci Lett, 2017, 650: 52-59. DOI: 10.1016/j.neulet.2017.04.026.
5
Zhou Y, Kierans A, Kenul D, et al. Mild traumatic brain injury: longitudinal regional brain volume changes[J]. Radiology, 2013, 267(3): 880-890. DOI: 10.1148/radiol.13122542.
6
Burrowes SAB, Rhodes CS, Meeker TJ, et al. Decreased grey matter volume in mTBI patients with post-traumatic headache compared to headache-free mTBI patients and healthy controls: a longitudinal MRI study[J]. Brain Imaging Behav, 2020, 14(5): 1651-1659. DOI: 10.1007/s11682-019-00095-7.
7
Meng L, Jiang J, Jin C, et al. Trauma-specific grey matter Alterations in PTSD[J]. Sci Rep, 2016, 6: 33748. DOI: 10.1038/srep33748.
8
Wds Killgore, Singh P, Kipman M, et al. Gray matter volume and executive functioning correlate with time since injury following mild traumatic brain injury[J]. Neurosci Lett, 2016, 612: 238-244. DOI: 10.1016/j.neulet.2015.12.033.
9
Wang X, Xie H, Cotton AS, et al. Early cortical thickness change after mild traumatic brain injury following motor vehicle collision[J]. J Neurotrauma, 2015, 32(7): 455-463. DOI: 10.1089/neu.2014.3492.
10
Bigler ED, Finuf C, Abildskov TJ, et al. Cortical thickness in pediatric mild traumatic brain injury including sports-related concussion[J]. Int J Psychophysiol, 2018, 132(Pt A): 99-104. DOI: 10.1016/j.ijpsycho.2018.07.474.
11
Tate DF, York GE, Reid MW, et al. Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings[J]. Brain Imaging Behav, 2014, 8(1): 102-109. DOI: 10.1007/s11682-013-9257-9.
12
Eierud C, Nathan DE, Bonavia GH, et al. Cortical thinning in military blast compared to non-blast persistent mild traumatic brain injuries[J]. Neuroimage Clin, 2019, 22: 101793. DOI: 10.1016/j.nicl.2019.101793.
13
Clark AL, Merritt VC, Bigler ED, et al. Blast-exposed veterans with mild traumatic brain injury show greater frontal cortical thinning and poorer executive functioning[J]. Front Neurol, 2018, 9: 873. DOI: 10.3389/fneur.2018.00873.
14
Santhanam P, Wilson SH, Oakes TR, et al. Accelerated age-related cortical thinning in mild traumatic brain injury [J]. Brain Behav, 2019, 9(1): e01161. DOI: 10.1002/brb3.1161.
15
Hoogenboom WS, Rubin TG, Ye K, et al. Diffusion tensor imaging of the evolving response to mild traumatic brain injury in rats[J]. J Exp Neurosci, 2019, 13: 1179069519858627. DOI: 10.1177/1179069519858627.
16
Clément T, Lee JB, Ichkova A, et al. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses[J]. Glia, 2020, 68(3): 528-542. DOI: 10.1002/glia.23736.
17
Yin B, Li D, Huang H, et al. Longitudinal changes in diffusion tensor imaging following mild traumatic brain injury and correlation with outcome[J]. Front Neural Circuits, 2019, 13: 28. DOI: 10.3389/fncir.2019.00028.
18
Bai L, Bai G, Wang S, et al. Strategic white matter injury associated with long-term information processing speed deficits in mild traumatic brain injury[J]. Hum Brain Mapp, 2020, 41(15): 4431-4441. DOI: 10.1002/hbm.25135.
19
Leung A, Yang E, Lim M, et al. Pain-related white matter tract abnormalities in mild traumatic brain injury patients with persistent headache[J]. Mol Pain, 2018, 14: 1744806918810297. DOI: 10.1177/1744806918810297.
20
Wang Z, Zhang M, Sun C, et al. Single mild traumatic brain injury deteriorates progressive inter-hemispheric functional and structural connectivity[J]. J Neurotrauma, DOI: . DOI: 10.1089/neu.2018.6196. DOI: .
21
Mohammadian M, Roine T, Hirvonen J, et al. Alterations in microstructure and local fiber orientation of the white matter are associated with outcome following mild traumatic brain injury[J]. J Neurotrauma, 2020, 37(24): 2616-2623. DOI: 10.1089/neu.2020.7081.
22
Cheng C, Koo B, Calderazzo S, et al. Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with chemical weapons exposure and mild traumatic brain injury[J]. Brain Behav Immun, 2020, 89: 281-290. DOI: 10.1016/j.bbi.2020.07.006.
23
Palacios EM, Owen JP, Yuh EL, et al. The evolution of white matter microstructural changes after mild traumatic brain injury: A longitudinal DTI and NODDI study[J]. Sci Adv, 2020, 6(32): eaaz6892. DOI: 10.1126/sciadv.aaz6892.
24
D'Souza M, Kumar M, Choudhary A, et al. Alterations of connectivity patterns in functional brain networks in patients with mild traumatic brain injury: A longitudinal resting-state functional magnetic resonance imaging study[J]. Neuroradiol J, 2020, 33(2): 186-197. DOI: 10.1177/1971400920901706.
25
Li F, Lu L, Shang S, et al. Disrupted functional network connectivity predicts cognitive impairment after acute mild traumatic brain injury[J]. CNS Neurosci Ther, 2020, 26(10): 1083-1091. DOI: 10.1111/cns.13430.
26
Banks SD, Coronado RA, Clemons LR, et al. Thalamic functional connectivity in mild traumatic brain injury: Longitudinal associations with patient-reported outcomes and neuropsychological tests [J]. Arch Phys Med Rehabil, 2016, 97(8): 1254-1261. DOI: 10.1016/j.apmr.2016.03.013.
27
Lu L, Li F, Wang P, et al. Altered hypothalamic functional connectivity in post-traumatic headache after mild traumatic brain injury[J]. J Headache Pain, 2020, 21(1): 93. DOI: 10.1186/s10194-020-01164-9.
28
Niu X, Bai L, Sun Y, et al. Disruption of periaqueductal grey-default mode network functional connectivity predicts persistent post-traumatic headache in mild traumatic brain injury [J]. J Neurol Neurosurg Psychiatry, 2019, 90(3): 326-332. DOI: 10.1136/jnnp-2018-318886.
29
Lu L, Li F, Ma Y, et al. Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury[J]. Eur J Radiol, 2019, 114: 69-75. DOI: 10.1016/j.ejrad.2019.03.002.
30
Churchill NW, Hutchison MG, Graham SJ. Symptom correlates of cerebral blood flow following acute concussion[J]. Neuroimage Clin, 2017, 16: 234-239. DOI: 10.1016/j.nicl.2017.07.019.
31
Stephens JA, Liu P, Lu H. Cerebral blood flow after mild traumatic brain injury: Associations between symptoms and post-injury perfusion[J]. J Neurotrauma, 2018, 35(2): 241-248. DOI: 10.1089/neu.2017.5237.
32
Ge Y, Patel MB, Chen Q, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T[J]. Brain Inj, 2009, 23(7): 666-674. DOI: 10.1080/02699050903014899.
33
Melie-García L, Sanabria-Diaz G, Sánchez-Catasús C. Studying the topological organization of the cerebral blood flow fluctuations in resting state[J]. Neuroimage, 2013, 64: 173-184. DOI: 10.1016/j.neuroimage.2012.08.082.
34
Li F, Lu L, Shang S, et al. Cerebral blood flow and its connectivity deficits in mild traumatic brain injury at the acute stage[J]. Front Neurol, 2020, 2020: 2174371. DOI: 10.1155/2020/2174371.
35
Veeramuthu V, Seow P, Narayanan V, et al. Neurometabolites alteration in the acute phase of mild traumatic brain injury (mTBI): An in vivo proton magnetic resonance spectroscopy (1H-MRS) study[J]. Acad Radiol, 2018, 25(9): 1167-1177. DOI: 10.1016/j.acra.2018.01.005.
36
Kirov II, Whitlow CT. Susceptibility-weighted imaging and magnetic resonance spectroscopy in concussion[J]. Neuroimaging Clin N Am, 2018, 28(1): 91-105. DOI: 10.1016/j.nic.2017.09.007.
37
Eisele A, Hill-Strathy M, Michels L, et al. Magnetic resonance spectroscopy following mild traumatic brain injury: A systematic review and meta-analysis on the potential to detect posttraumatic neurodegeneration[J]. Neurodegener Dis, 2020, 20(1): 2-11. DOI: 10.1159/000508098.
38
Li F, Lu L, Chen H, et al. Neuroanatomical and functional alterations of insula in mild traumatic brain injury patients at the acute stage[J]. Brain Imaging Behav, 2020, 14(3): 907-916. DOI: 10.1007/s11682-019-00053-3.
39
Iyer K, Zalesky A, Barlow KM, et al. Default mode network anatomy and function is linked to pediatric concussion recovery[J]. Ann Clin Transl Neurol, 2019, 6(12): 2544-2554. DOI: 10.1002/acn3.50951.
40
Irimia A, Maher A, Chaudhari N, et al. Acute cognitive deficits after traumatic brain injury predict Alzheimer's disease-like degradation of the human default mode network[J]. Geroscience, 2020, 42(5): 1411-1429. DOI: 10.1007/s11357-020-00245-6.

PREV The progress in neuroimaging of ischemic stroke
NEXT Advances in brain fMRI research of scalp acupuncture therapy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn