Share:
Share this content in WeChat
X
Review
The hippocampus multimodal MRI progress of cognitive impairment
HE Wanli  HUANG Gang  ZHAO Lianping 

Cite this article as: He WL, Huang G, Zhao LP. The hippocampus multimodal MRI progress of cognitive impairment[J]. Chin J Magn Reson Imaging, 2018, 12(4): 111-114. DOI:10.12015/issn.1674-8034.2021.04.028.


[Abstract] Cognitive impairment is a disease that has not reached the level of dementia. It not only affects the patient's ability of daily living, but may develop into dementia in severe cases. The hippocampus is an important brain area for cognitive function. In recent years, MRI technology has been widely used in the study of the hippocampus of patients with cognitive impairment. Therefore, this article reviews the research status of hippocampal MRI neuroimaging of cognitive impairment to understand it's latest development. A large number of studies have agreed that the hippocampus is the main brain area affected by cognitive impairment, especially the hippocampal CA1 area. Its functional and structural changes may be important neuroimaging markers for cognitive impairment. Compared with structural changes, functional changes may be more sensitive to the detection of cognitive impairment.
[Keywords] cognitive impairment;hippocampus;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging

HE Wanli1   HUANG Gang2   ZHAO Lianping2*  

1 First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China

2 Department of Radiology, Gansu Provincial Hospital, Lanzhou 730000, China

Zhao LP, E-mail: lianping_zhao007@163.com

Conflicts of interest   None.

This work was part of National Natural Science Foundation of China (No. 81860306, 81901724) and Natural Science Foundation of Gansu Province (No. 20JR5RA156).
Received  2021-01-21
Accepted  2021-02-02
DOI: 10.12015/issn.1674-8034.2021.04.028
Cite this article as: He WL, Huang G, Zhao LP. The hippocampus multimodal MRI progress of cognitive impairment[J]. Chin J Magn Reson Imaging, 2018, 12(4): 111-114. DOI:10.12015/issn.1674-8034.2021.04.028.

1
Fogwe LA, Reddy V, Mesfin FB. Neuroanatomy, hippocampus[M]. Statpearls113Treasure Island (FL): Stat Pearls Publishing, 2020.
2
Li H, Jia X, Qi Z, et al. Disrupted functional connectivity of cornu ammonis subregions in amnestic mild cognitive impairment: A longitudinal resting-state fmri study[J]. Front Hum Neurosci, 2018, 12: 413. DOI: 10.3389/fnhum.2018.00413.
3
Kunst J, Marecek R, Klobusiakova P, et al. Patterns of grey matter atrophy at different stages of parkinson's and alzheimer's diseases and relation to cognition[J]. Brain Topogr, 2019, 32(1): 142-160. DOI: 10.1007/s10548-018-0675-2.
4
Chen FX, Kang DZ, Chen FY, et al. Gray matter atrophy associated with mild cognitive impairment in parkinson's disease[J]. Neurosci Lett, 2016, 617: 160-165. DOI: 10.1016/j.neulet.2015.12.055.
5
Wolf RC, Höse A, Frasch K, et al. Volumetric abnormalities associated with cognitive deficits in patients with schizophrenia[J]. Eur Psychiatry, 2020, 23(8): 541-548. DOI: 10.1016/j.eurpsy.2008.02.002.
6
Vasic N, Walter H, Hose A, et al. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: A voxel-based morphometry study[J]. J Affect Disord, 2008, 109(1-2): 107-116. DOI: 10.1016/j.jad.2007.11.011.
7
Schmidt-Wilcke T, Poljansky S, Hierlmeier S, et al. Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls--a voxel based morphometry study[J]. Neuroimage, 2009, 47(4): 1914-1920. DOI: 10.1016/j.neuroimage.2009.04.092.
8
Ferreira LK, Diniz BS, Forlenza OV, et al. Neurostructural predictors of alzheimer's disease: A meta-analysis of vbm studies[J]. Neurobiol Aging, 2011, 32(10): 1733-1741. DOI: 10.1016/j.neurobiolaging.2009.11.008.
9
Zhou Y, Li XL, Xie HL, et al. Voxel-based morphology analysis of stz-induced type 1 diabetes mellitus rats with and without cognitive impairment[J]. Neurosci Lett, 2018, 684: 210-217. DOI: 10.1016/j.neulet.2018.08.017.
10
McIntosh EC, Jacobson A, Kemmotsu N, et al. Does medial temporal lobe thickness mediate the association between risk factor burden and memory performance in middle-aged or older adults with metabolic syndrome?[J]. Neurosci Lett, 2017, 636: 225-232. DOI: 10.1016/j.neulet.2016.10.010.
11
Lee P, Ryoo H, Park J, et al. Morphological and microstructural changes of the hippocampus in early mci: A study utilizing the alzheimer's disease neuroimaging initiative database[J]. J Clin Neurol, 2017, 13(2): 144-154. DOI: 10.3988/jcn.2017.13.2.144.
12
Shim G, Choi KY, Kim D, et al. Predicting neurocognitive function with hippocampal volumes and dti metrics in patients with alzheimer's dementia and mild cognitive impairment[J]. Brain Behav, 2017, 7(9): e00766. DOI: 10.1002/brb3.766.
13
Hong YJ, Yoon B, Lim SC, et al. Microstructural changes in the hippocampus and posterior cingulate in mild cognitive impairment and alzheimer's disease: A diffusion tensor imaging study[J]. Neurol Sci, 2013, 34(7): 1215-1221. DOI: 10.1007/s10072-012-1225-4.
14
Zhuang L, Sachdev PS, Trollor JN, et al. Microstructural white matter changes, not hippocampal atrophy, detect early amnestic mild cognitive impairment[J]. PLoS One, 2013, 8(3): e58887. DOI: 10.1371/journal.pone.0058887.
15
Kantarci K, Petersen RC, Boeve BF, et al. Dwi predicts future progression to alzheimer disease in amnestic mild cognitive impairment[J]. Neurology, 2005, 64(5): 902-904. DOI: 10.1212/01.wnl.0000153076.46126.e9.
16
Fellgiebel A, Dellani PR, Greverus D, et al. Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus[J]. Psychiatry Res, 2006, 146(3): 283-287. DOI: 10.1016/j.pscychresns.2006.01.006.
17
Johnson DK, Barrow W, Anderson R, et al. Diagnostic utility of cerebral white matter integrity in early alzheimer's disease[J]. Int J Neurosci, 2010, 120(8): 544-550. DOI: 10.3109/00207454.2010.494788.
18
Mak E, Gabel S, Su L, et al. Multi-modal mri investigation of volumetric and microstructural changes in the hippocampus and its subfields in mild cognitive impairment, alzheimer's disease, and dementia with lewy bodies[J]. Int Psychogeriatr, 2017, 29(4): 545-555. DOI: 10.1017/S1041610216002143.
19
Wang ML, Wei XE, Fu JL, et al. Subcortical nuclei in alzheimer's disease: A volumetric and diffusion kurtosis imaging study[J]. Acta Radiol, 2018, 59(11): 1365-1371. DOI: 10.1177/0284185118758122.
20
Falangola MF, Jensen JH, Tabesh A, et al. Non-gaussian diffusion mri assessment of brain microstructure in mild cognitive impairment and alzheimer's disease[J]. Magn Reson Imaging, 2013, 31(6): 840-846. DOI: 10.1016/j.mri.2013.02.008.
21
Yuan L, Sun M, Chen Y, et al. Non-gaussian diffusion alterations on diffusion kurtosis imaging in patients with early alzheimer's disease[J]. Neurosci Lett, 2016, 616: 11-18. DOI: 10.1016/j.neulet.2016.01.021.
22
Wang Y, Zhao X, Xu S, et al. Using regional homogeneity to reveal altered spontaneous activity in patients with mild cognitive impairment[J]. Biomed Res Int, 2015, 2015: 807093. DOI: 10.1155/2015/807093.
23
Zhen D, Xia W, Yi ZQ, et al. Alterations of brain local functional connectivity in amnestic mild cognitive impairment[J]. Transl Neurodegener, 2018, 7: 26. DOI: 10.1186/s40035-018-0134-8.
24
Ni L, Liu R, Yin Z, et al. Aberrant spontaneous brain activity in patients with mild cognitive impairment and concomitant lacunar infarction: A resting-state functional mri study[J]. J Alzheimers Dis, 2016, 50(4): 1243-1254. DOI: 10.3233/JAD-150622.
25
Xi Q, Zhao XH, Wang PJ, et al. Abnormal intrinsic brain activity in amnestic mild cognitive impairment revealed by amplitude of low-frequency fluctuation: A resting-state functional magnetic resonance imaging study[J]. Chin Med J (Engl), 2013, 126(15): 2912-2917.
26
Liu X, Wang S, Zhang X, et al. Abnormal amplitude of low-frequency fluctuations of intrinsic brain activity in alzheimer's disease[J]. J Alzheimers Dis, 2014, 40(2): 387-397. DOI: 10.3233/JAD-131322.
27
Pan P, Zhu L, Yu T, et al. Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies[J]. Ageing Res Rev, 2017, 35: 12-21. DOI: 10.1016/j.arr.2016.12.001.
28
Zhou X, Zhang J, Chen Y, et al. Aggravated cognitive and brain functional impairment in mild cognitive impairment patients with type 2 diabetes: A resting-state functional mri study[J]. J Alzheimers Dis, 2014, 41(3): 925-935. DOI: 10.3233/JAD-132354.
29
Wang Y, Risacher SL, West JD, et al. Altered default mode network connectivity in older adults with cognitive complaints and amnestic mild cognitive impairment[J]. J Alzheimers Dis, 2013, 35(4): 751-760. DOI: 10.3233/JAD-130080.
30
De Vogelaere F, Santens P, Achten E, et al. Altered default-mode network activation in mild cognitive impairment compared with healthy aging[J]. Neuroradiology, 2012, 54(11): 1195-1206. DOI: 10.1007/s00234-012-1036-6.
31
Pasquini L, Scherr M, Tahmasian M, et al. Link between hippocampus' raised local and eased global intrinsic connectivity in ad[J]. Alzheimers Dement, 2015, 11(5): 475-484. DOI: 10.1016/j.jalz.2014.02.007.
32
Gilligan TM, Sibilia F, Farrell D, et al. No relationship between fornix and cingulum degradation and within-network decreases in functional connectivity in prodromal alzheimer's disease[J]. PLoS One, 2019, 14(10): e0222977. DOI: 10.1371/journal.pone.0222977.
33
Avery SN, Rogers BP, Heckers S. Hippocampal network modularity is associated with relational memory dysfunction in schizophrenia[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(5): 423-432. DOI: 10.1016/j.bpsc.2018.02.001.
34
Zhang Y, Cao Y, Xie Y, et al. Altered brain structural topological properties in type 2 diabetes mellitus patients without complications[J]. J Diabetes, 2019, 11(2): 129-138. DOI: 10.1111/1753-0407.12826.
35
Xue J, Guo H, Gao Y, et al. Altered directed functional connectivity of the hippocampus in mild cognitive impairment and alzheimer's disease: A resting-state fMRI study[J]. Front Aging Neurosci, 2019, 11: 326. DOI: 10.3389/fnagi.2019.00326.
36
Wang P, Zhou B, Yao H, et al. Aberrant hippocampal functional connectivity is associated with fornix white matter integrity in alzheimer's disease and mild cognitive impairment[J]. J Alzheimers Dis, 2020, 75(4): 1153-1168. DOI: 10.3233/JAD-200066.
37
Yao G, Li J, Liu S, et al. Alterations of functional connectivity in stroke patients with basal ganglia damage and cognitive impairment[J]. Front Neurol, 2020, 11: 980. DOI: 10.3389/fneur.2020.00980.
38
Kim J, Kim YH, Lee JH. Hippocampus-precuneus functional connectivity as an early sign of alzheimer's disease: A preliminary study using structural and functional magnetic resonance imaging data[J]. Brain Res, 2013, 1495: 18-29. DOI: 10.1016/j.brainres.2012.12.011.
39
Eichenbaum H. Memory: Organization and control[J]. Annu Rev Psychol, 2017, 68: 19-45. DOI: 10.1146/annurev-psych-010416-044131.
40
Sperling R. Functional mri studies of associative encoding in normal aging, mild cognitive impairment, and alzheimer's disease[J]. Ann N Y Acad Sci, 2007, 1097: 146-155. DOI: 10.1196/annals.1379.009.
41
Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fmri response among normal, mci, and alzheimer's patients[J]. Neurology, 2003, 61(4): 500-506. DOI: 10.1212/01.wnl.0000079052.01016.78.
42
Hamalainen A, Pihlajamaki M, Tanila H, et al. Increased fmri responses during encoding in mild cognitive impairment[J]. Neurobiol Aging, 2007, 28(12): 1889-1903. DOI: 10.1016/j.neurobiolaging.2006.08.008.
43
Edelman K, Tudorascu D, Agudelo C, et al. Amyloid-beta deposition is associated with increased medial temporal lobe activation during memory encoding in the cognitively normal elderly[J]. Am J Geriatr Psychiatry, 2017, 25(5): 551-560. DOI: 10.1016/j.jagp.2016.12.021.
44
Miller SL, Fenstermacher E, Bates J, et al. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline[J]. J Neurol Neurosurg Psychiatry, 2008, 79(6): 630-635. DOI: 10.1136/jnnp.2007.124149.
45
Wang H, Tan L, Wang HF, et al. Magnetic resonance spectroscopy in alzheimer's disease: Systematic review and meta-analysis[J]. J Alzheimers Dis, 2015, 46(4): 1049-1070. DOI: 10.3233/JAD-143225.
46
Foy CM, Daly EM, Glover A, et al. Hippocampal proton mr spectroscopy in early alzheimer's disease and mild cognitive impairment[J]. Brain Topogr, 2011, 24(3-4): 316-322. DOI: 10.1007/s10548-011-0170-5.
47
Dixon RM, Bradley KM, Budge MM, et al. Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in alzheimer's disease[J]. Brain, 2002, 125(Pt 10): 2332-2341. DOI: 10.1093/brain/awf226.
48
Watanabe T, Shiino A, Akiguchi I. Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from alzheimer's disease and healthy aging[J]. Dement Geriatr Cogn Disord, 2010, 30(1): 71-77. DOI: 10.1159/000318750.
49
Targosz-Gajniak MG, Siuda JS, Wicher MM, et al. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia[J]. J Neurol Sci, 2013, 335(1-2): 58-63. DOI: 10.1016/j.jns.2013.08.023.
50
Lu X, Gong W, Wen Z, et al. Correlation between diabetic cognitive impairment and diabetic retinopathy in patients with t2dm by (1)h-mrs[J]. Front Neurol, 2019, 10: 1068. DOI: 10.3389/fneur.2019.01068.
51
Sun Y, Cao W, Ding W, et al. Cerebral blood flow alterations as assessed by 3d asl in cognitive impairment in patients with subcortical vascular cognitive impairment: A marker for disease severity[J]. Front Aging Neurosci, 2016, 8: 211. DOI: 10.3389/fnagi.2016.00211.
52
Mattsson N, Tosun D, Insel PS, et al. Association of brain amyloid-beta with cerebral perfusion and structure in alzheimer's disease and mild cognitive impairment[J]. Brain, 2014, 137(Pt 5): 1550-1561. DOI: 10.1093/brain/awu043.
53
Bangen KJ, Werhane ML, Weigand AJ, et al. Reduced regional cerebral blood flow relates to poorer cognition in older adults with type 2 diabetes[J]. Front Aging Neurosci, 2018, 10: 270. DOI: 10.3389/fnagi.2018.00270.
54
Thomas KR, Osuna JR, Weigand AJ, et al. Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline[J]. J Cereb Blood Flow Metab, 2020: 271678X20935171. DOI: 10.1177/0271678X20935171.
55
Mascalchi M, Ginestroni A, Bessi V, et al. Regional analysis of the magnetization transfer ratio of the brain in mild alzheimer disease and amnestic mild cognitive impairment[J]. AJNR Am J Neuroradiol, 2013, 34(11): 2098-2104. DOI: 10.3174/ajnr.A3568.
56
Wang R, Chen J, Li CM. A preliminary study on amide proton transfer MR imaging of Alzheimer's disease and mild cognitive impairment in elder patients[J]. Chin J Gerontol, 2015, 34(10): 1080-1083. DOI: 10.3760/cma.j.issn.0254-9026.2015.10.008.

PREV Research progresses of structural and functional magnetic resonance imaging in intelligence
NEXT Research progress of DWI-MRI and BOLD-fMRI in visual pathway diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn