Share:
Share this content in WeChat
X
Review
Current progress of machine learning combined with functional magnetic resonance imaging in depression's diagnosis
LIAO Lifang  WANG Oucheng  LIU Yong 

Cite this article as: Liao LF, Wang OC, Liu Y. Current progress of machine learning combined with functional magnetic resonance imaging in depression's diagnosis[J]. Chin J Magn Reson Imaging, 2021, 12(5): 107-109, 117. DOI:10.12015/issn.1674-8034.2021.05.026.


[Abstract] Depression is one of psychiatric disorders with serious negative health outcomes,and it is of high incidence and easily recurrence. As for its diagnosis, it relies on Diagnostic and Statistical Manual of Mental Disorders,fifth edition (DSM-5) and International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10). While combining fMRI with machine learning is potential to search for specific markers which provide objective imaging evidence for its diagnosis. Therefore, this review introduces current progress about task-state functional magnetic resonance imaging (task-state fMRI), rest-state functional magnetic resonance imaging (rest-state fMRI), arterial spin labeling (ASL) and diffusion tensor imaging (DTI) respectively combined with machine learning in depression's diagnosis.
[Keywords] depression;machine learning;deep learning;functional magnetic resonance imaging;classification

LIAO Lifang1   WANG Oucheng2   LIU Yong2*  

1 Southwest Medical University of Sichuan Province, Luzhou 646000, China

2 Department of Magnetic Resonance Imaging, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University of Sichuan Province, Luzhou 646000, China

Liu Y, E-mail: yq_159@yahoo.com.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by Natural Science Project of Southwest Medical University and Affiliated Traditional Chinese Medicine Hospital of Southwest Mediacal University (No. 2018XYLH-011).
Received  2021-01-13
Accepted  2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.026
Cite this article as: Liao LF, Wang OC, Liu Y. Current progress of machine learning combined with functional magnetic resonance imaging in depression's diagnosis[J]. Chin J Magn Reson Imaging, 2021, 12(5): 107-109, 117. DOI:10.12015/issn.1674-8034.2021.05.026.

1
Lu L. Shen Yucun Psychiatry[M]. Beijing: People 's Medical Publishing House, 2017: 381-382.
2
Song XL, Mu XN, Yu MX, et al. the study of brain fMRI in task state of first-episode patients with mild and moderate depression before and after treatment[J]. J Clin Radiol, 2019, 38(7): 1174-1179. DOI: 10.13437/j.cnki.jcr.20190731.004.
3
Li YH, Liu XZ, Liu YJ, et al. The functional magnetic resonance imaging of major depression disorder in resting state and task state[J]. Chin J Clin Psychol, 2017, 25(3): 393-399, 405. DOI: 10.16128/j.cnki.1005-3611.2017.03.001.
4
Spellman T, Liston C. Toward circuit mechanisms of pathophysiology in depression[J]. Am J Psychiatry, 2020, 177(5): 381-390. DOI: 10.1176/appi.ajp.2020.20030280.
5
Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J]. Mol Psychiatry, 2020, 25(3): 530-543. DOI: 10.1038/s41380-019-0615-x.
6
Li BJ, Friston K, Mody M, et al. A brain network model for depression: from symptom understanding to disease intervention[J]. CNS Neurosci Ther, 2018, 24(11): 1004-1019. DOI: 10.1111/cns.12998.
7
Zhou HX, Chen X, Shen YQ, et al. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression[J]. Neuroimage, 2020, 206: 116287. DOI: 10.1016/j.neuroimage.2019.116287.
8
Sun H, Luo L, Yuan X, et al. Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects[J]. J Affect Disord, 2018, 235: 229-235. DOI: 10.1016/j.jad.2018.04.061.
9
Gong J, Wang J, Qiu S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J]. Transl Psychiatry, 2020, 19, 10(1): 353. DOI: 10.1038/s41398-020-01036-5.
10
Cooper CM, Chin Fatt CR, Liu P, et al. Discovery and replication of cerebral blood flow differences in major depressive disorder[J]. Mol Psychiatry, 2020, 25(7): 1500-1510. DOI: 10.1038/s41380-019-0464-7.
11
Jiang J, Zhao YJ, Hu XY, et al. Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging[J]. J Psychiatry Neurosci, 2017, 42(3): 150-163. DOI: 10.1503/jpn.150341.
12
Korgaonkar MS, Fornito A, Williams LM, et al. Abnormal structural networks characterize major depressive disorder: a connectome analysis[J]. Biol Psychiatry, 2014, 76(7): 567-74. DOI: 10.1016/j.biopsych.2014.02.018.
13
Sun YT, Chen TL, He D, et al. current progress of objective biomarkers based on neuroimage and artificial intelligence in depression[J]. Prog Bichem Biophys, 2019, 46(9): 879-899. DOI: 10.16476/j.pibb.2019.0025
14
Oliveira L, Ladouceur CD, Phillips ML, et al. What does brain response to neutral faces tell us about major depression? evidence from machine learning and fMRI[J]. PLoS One. 2013, 8(4): e60121. DOI: 10.1371/journal.pone.0060121.
15
Rosa MJ, Portugal L, Hahn T, et al. Sparse network-based models for patient classification using fMRI[J]. Neuroimage, 2015, 105: 493-506. DOI: 10.1016/j.neuroimage.2014.11.021.
16
Shimizu Y, Yoshimoto J, Toki S, et al. Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with Logistic group LASSO[J]. PLoS One, 2015, 10(5): e0123524. DOI: 10.1371/journal.pone.0123524.
17
Gui RZ, Chen, TJ, Nie H, et al. The impact of emotional music on active ROI in patients with depression based on deep learning: a task-state fMRI study. Comput Intellih Neurosci, 2019, (6): 1-14. DOI: 10.1155/2019/5850830.
18
Hirshfeld-Becker DR, Gabrieli JDE, Shapero BG, et al. Intrinsic functional brain connectivity predicts onset of major depression disorder in adolescence: a pilot study[J]. Brain Connect, 2019, 9(5): 388-398. DOI: 10.1089/brain.2018.0646.
19
Zeng LL, Shen H, Liu L, et al. Unsupervised classification of major depression using functional connectivity MRI[J]. Hum Brain Mapp, 2014, 35(4): 1630-1641. DOI: 10.1002/hbm.22278.
20
Yamashita A, Sakai Y, Yamada T, et al. Generalizable brain network markers of major depressive disorder across multiple imaging sites[J]. PLoS Biol, 2020, 18(12): e3000966. DOI: 10.1371/journal.pbio.3000966.
21
Zhao J, Huang J, Zhi D, et al. Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders[J]. J Neurosci Methods, 2020, 341: 108756. DOI: 10.1016/j.jneumeth.2020.108756.
22
Jun E, Na KS, Kang W, et al. Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks[J]. Hum Brain Mapp, 2020, 41(17): 4997-5014. DOI: 10.1002/hbm.25175.
23
Wei M, Qin J, Yan R, et al. Identifying major depressive disorder using Hurst exponent of resting-state brain networks[J]. Psychiatry Res, 2013, 214(3): 306-312. DOI: 10.1016/j.pscychresns.2013.09.008.
24
Guo H, Qin M, Chen J, et al. Machine-learning classifier for patients with major depressive disorder: multifeature approach based on a high-order minimum spanning tree functional brain network[J]. Comput Math Methods Med, 2017, 2017: 4820935. DOI: 10.1155/2017/4820935.
25
Guo H, Li Y, Mensah GK, et al. Resting-state functional network scale effects and statistical significance-based feature selection in machine learning classification[J]. Comput Math Methods Med, 2019, 2019: 9108108. DOI: 10.1155/2019/9108108.
26
Zhang H. the research of depression's functional brain network features classification based on fMRI data[D]. Southwest University, 2017.
27
Liu WZ, Cheng C, Guo H, et al. Regional homogeneity-based feature selection and its study on major depressive disorder[J]. Computer App Software, 2015, 32(1): 71-73, 105.
28
Liu WZ. The classification research of resting-state fMRI data in major depression disorder based on ReHo and ALFF[D]. Taiyuan University of Technology. 2014.
29
Ramasubbu R, Brown EC, Marcil LD, et al. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements[J]. Psychiatry Clin Neurosci, 2019, 73(8): 486-493. DOI: 10.1111/pcn.12862.
30
Schnyer DM, Clasen PC, Gonzalez C, et al. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder[J]. Psychiatry Res Neuroimaging, 2017, 264: 1-9. DOI: 10.1016/j.pscychresns.2017.03.003. DOI: .
31
Deng F, Wang Y, Huang H, et al. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 340-349. DOI: 10.1016/j.pnpbp.2017.09.006.
32
Yang J, Zhang M, Ahn H, et al. Development and evaluation of a multimodal marker of major depressive disorder[J]. Hum Brain Mapp, 2018, 39(11): 4420-4439. DOI: 10.1002/hbm.24282.
33
Fang P, Zeng LL, Shen H, et al. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging[J]. PLoS One, 2012, 7(9): e45972. DOI: 10.1371/journal.pone.0045972.
34
Qin J, Wei M, Liu H, et al. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification[J]. Magn Reson Imaging, 2014, 32(10): 1314-1320. DOI: 10.1016/j.mri.2014.08.037.
35
Ramasubbu R, Brown MR, Cortese F, et al. Accuracy of automated classification of major depressive disorder as a function of symptom severity[J]. Neuroimage Clin, 2016, 12: 320-331. DOI: 10.1016/j.nicl.2016.07.012.

PREV Research progress on isocitrate dehydrogenase genotype and imaging of glioma
NEXT Research progress on the specificity and brain network of acupuncture at Zhigou acupoint based on brain fMRI technology
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn