Share:
Share this content in WeChat
X
Review
Progress in imaging assessment of the risk of esophageal varices and bleeding in cirrhosis
LIU Hong  LIU Guangyao  ZHOU Junlin 

Cite this article as: Citation:Liu H, Liu GY, Zhou JL. Progress in imaging assessment of the risk of esophageal varices and bleeding in cirrhosis[J]. Chin J Magn Reson Imaging, 2021, 12(9): 109-112. DOI:10.12015/issn.1674-8034.2021.09.028.


[Abstract] Esophageal variceal bleeding (EVB) was a fatal complication caused by cirrhosis, and its early prevention had always been a clinical difficulty. Gastroscopy was the gold standard for the diagnosis of esophageal varices (EV) and bleeding in cirrhosis, but it couldn't widely carried out because of its traumatic nature. At present, some noninvasive detection technologies, which mainly included ultrasound, CT, MRI, and radiomics technology, had become important means of early diagnosis and follow-up of this disease. These noninvasive technologies were expected to replace gastroscopy in the diagnosis of cirrhosic esophageal varices and the assessment of esophageal variceal bleeding risk and provide a new way of thinking. This article will review the recent progress in non-invasive imaging diagnosis and prediction of EV and EVB.
[Keywords] cirrhosis;portal hypertension;esophageal variceal bleeding;non-invasive diagnosis;imaging

LIU Hong1, 2, 3   LIU Guangyao1, 2, 3, 4   ZHOU Junlin1, 2, 3*  

1 Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730030, China

2 Second Clinical School, Lanzhou University, Lanzhou 730030, China

3 Key Laboratory of Medical Imaging of Gansu Province, Lanzhou 730030, China

4 Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China

Zhou JL, E-mail: ery_zhoujl@lzu.edu.cn

Conflicts of interest   None.

Received  2021-01-06
Accepted  2021-02-25
DOI: 10.12015/issn.1674-8034.2021.09.028
Cite this article as: Citation:Liu H, Liu GY, Zhou JL. Progress in imaging assessment of the risk of esophageal varices and bleeding in cirrhosis[J]. Chin J Magn Reson Imaging, 2021, 12(9): 109-112. DOI:10.12015/issn.1674-8034.2021.09.028.

[1]
Kim YD. Management of Acute Variceal Bleeding[J]. Clin Endosc, 2014, 47(4): 308-314. DOI: 10.5946/ce.2014.47.4.308.
[2]
Ding HG, Xu XY, LingHu EQ, et al. Guidelines for the prevention and treatment of esophageal and gastric varicose veins with portal hypertension in cirrhosis[J]. J Clin Hepatol, 2016, 32(2): 220-222. DOI: 10.3969/j.issn.1001-5256.2016.02.003.
[3]
Franchis RD. Revising consensus in portal hypertension: Report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension[J]. J Hepatol, 2010, 53(4): 762-768. DOI: 10.1016/j.jhep.2010.06.004.
[4]
Toshikuni N, Takuma Y, Tsutsumi M. Management of gastroesophageal varices in cirrhotic patients: current status and future directions[J]. Ann Hepatol, 2016, 15(3): 314-325. DOI: 10.5604/16652681.1198800.
[5]
Barnett R. Liver cirrhosis. Lancet, 2018, 392(10144): 275. DOI: 10.1016/S0140-6736(18)31659-3.
[6]
Garcia-Tsao G, Sanyal AJ, Grace ND, et al. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis[J]. Am J Gastroenterol, 2007, 102(9): 2086-2102. DOI: 10.1111/j.1572-0241.2007.01481.x.
[7]
Maurice J, Brodkin E, Arnold F, et al. Validation of the Baveno VI criteria to identify low risk cirrhotic patients not requiring endoscopic surveillance for varices[J]. J Hepatol, 2016, 65(5): 899-905. DOI: 10.1016/j.jhep.2016.06.021.
[8]
Zheng KI, Liu C, Li J, et al. Validation of Baveno VI and expanded Baveno VI criteria to identify high-risk varices in patients with MAFLD-related compensated cirrhosis[J]. J Hepatol, 2020, 73(6): 1571-1573. DOI: 10.1016/j.jhep.2020.06.042.
[9]
Moctezuma Velázquez C, Abraldes JG. Non-invasive diagnosis of esophageal varices after Baveno VI[J]. Turk J Gastroenterol, 2017, 28(3): 159-165. DOI: 10.5152/tjg.2017.16744.
[10]
Karatzas A. Νon-invasive screening for esophageal varices in patients with liver cirrhosis[J]. Ann Gastroenterol, 2018, 31(3): 305-314. DOI: 10.20524/aog.2018.0241.
[11]
Bintintan A, Chira RI, Bintintan VV, et al. Value of hepatic elastography and Doppler indexes for predictions of esophageal varices in liver cirrhosis [J]. Med Ultrason, 2015, 17(1): 5-11. DOI: 10.11152/mu.2013.2066.171.abric.
[12]
Qiu L, Zhang X, Liu D, et al. Contrast-enhanced ultrasonography diagnostic evaluation of esophageal varices in patients with cirrhosis [J]. Ultrasound Q, 2016, 32(2): 136-143. DOI: 10.1097/RUQ.0000000000000173.
[13]
Stefanescu H, Allegretti G, Salvatore V, et al. Bidimensional shear wave ultrasound elastography with supersonic imaging to predict presence of oesophageal varices in cirrhosis[J]. Liver Int, 2017, 37(9):1405. DOI: 10.1111/liv.13418.
[14]
Jansen C, Thiele M, Verlinden W, et al. Prediction of presence of oesophageal varices just by shear-wave elastography of the liver and spleen [J]. Liver Int, 2017, 37(9): 1406-1407. DOI: 10.1111/liv.13446.
[15]
Kim HY, Jin EH, Kim W, et al. The role of spleen stiffness in determining the severity and bleeding risk of esophageal varices in cirrhotic patients. medicine (Baltimore)[J]. 2015, 94(24): e1031. DOI: 10.1097/MD.0000000000001031.
[16]
Huang XG, Li SH, Huang MT, et al. Prediction of esophageal variceal bleeding in patients with hepatic cirrhosis by different non-invasive markers[J]. Chin Hepatol, 2020, 25(7): 724-728. DOI: 10.14000/j.cnki.issn.1008-1704.2020.07.022.
[17]
Han X, An W, Cao Q, et al. Noninvasive evaluation of esophageal varices in cirrhotic patients based on spleen hemodynamics: a dual-energy CT study[J]. Eur Radiol, 2020, 30(6): 3210-3216. DOI: 10.1007/s00330-020-06680-5.
[18]
Kim H, Choi D, Gwak GY, et al. Evaluation of esophageal varices on liver computed tomography: receiver operating characteristic analyses of the performance of radiologists and endoscopists[J]. J Gastroenterol Hepatol, 2009, 24(9): 1534-1540. DOI: 10.1111/j.1440-1746.2009.05849.x.
[19]
Tseng YJ, Zeng XQ, Chen J, et al. Computed tomography in evaluating gastroesophageal varices in patients with portal hypertension: a meta-analysis[J]. Dig Liver Dis, 2016, 48(7): 695-702. DOI: 10.1016/j.dld.2016.02.007.
[20]
Perri RE, Chiorean MV, Fidler JL, et al. A prospective evaluation of computerized tomographic (CT) scanning as a screening modality for esophageal varices[J]. Hepatology, 2008, 47(5): 1587-1594. DOI: 10.1002/hep.22219.
[21]
Kim SH, Kim YJ, Lee JM, et al. Esophageal varices in patients with cirrhosis: multidetector ct esophagography comparison with endoscopy [J]. Radiology, 2007, 242(3): 759-768. DOI: 10.1148/radiol.2423050784.
[22]
Shen M, Zhu KS, Meng XC, et al. Evaluation of esophageal varices and predicting the risk of esophageal varices bleeding with multi-detector CT in patients with portal hypertension[J]. Zhonghua Yi Xue Za Zhi, 2010, 90(41): 2911-2915. DOI: 10.3760/cma.j.issn.0376-2491.2010.41.008.
[23]
Ma Somsouk, To'o K, Ali M, et al. Esophageal varices on computed tomography and subsequent variceal hemorrhage[J]. Abdom Imaging, 2014, 39(2): 251-256. DOI: 10.1007/s00261-013-0057-x.
[24]
Deng H, Qi X, Zhang Y, et al. Diagnostic accuracy of contrast-enhanced computed tomography for esophageal varices in liver cirrhosis: a retrospective observational study[J]. J Evid Based Med, 2016, 10(1): 46-52. DOI: 10.1111/jebm.12226.
[25]
Wan S, Wei Y, Yu HP, et al. Computed tomographic portography with esophageal variceal measurements in the evaluation of esophageal variceal severity and assessment of esophageal variceal volume efficacy[J]. Acad Radiol, 2020, 27(4): 528-535. DOI: 10.1016/j.acra.2019.05.015.
[26]
Zhang LJ, Wu SY, Wang M, et al. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings[J]. Eur J Radiol, 2012, 81(8): 1766-1775. DOI: 10.1016/j.ejrad.2011.06.057.
[27]
Zhao LQ, He W, Li JY, et al. The evaluation of hepatic artery index in cirrhosis patient with spectral CT imaging[J]. Chin J Radiol, 2012, 81(8): 1766-1775. DOI: 10.3760/cma.j.issn.1005-1201.2011.08.018.
[28]
Shang SF, Cao Q, Han X, et al. Assessing liver hemodynamics in children with cholestatic cirrhosis by use of dual-energy spectral CT[J]. Am J Roentgenol, 2020, 214(3): 665-670. DOI: 10.2214/AJR.19.22035.
[29]
Zhao LQ, He W, Yan B, et al. The evaluation of haemodynamics in cirrhotic patients with spectral CT[J]. Br J Radiol, 2013, 86(1028): 20130228. DOI: 10.1259/bjr.20130228.
[30]
Silva AC, Morse BG, Hara AK, et al. Dual-energy (spectral) CT: applications in abdominal imaing [J]. Radiographics, 2011, 31(4): 1047-1050. DOI: 10.1148/rg.314105159.
[31]
Yagi M, Ueguchi T, Koizumi M, et al. Gemstone spectral imaging: determination of CT to ED conversion curves for radiotherapy treatment planning[J]. J Appl Clin Med Phys, 2013, 14(5): 173-186. DOI: 10.1120/jacmp.v14i5.4335.
[32]
Zhang XP. The spirit and pleasure of scientific exploration: many thoughts in spectral CT imaging clinical application[J]. Chin J Radiol, 2011, 45(8):709-712. DOI: 10.3760/cma.j.issn.1005-1201.2011.08.001.
[33]
Wang F, Shen JL, Hua J, et al. Studies of the application of spectral CT evaluating the grading of esophageal varices of liver cirrhosis [J]. J Clin Radiol, 2016, 35(2): 208-212. DOI: 10.3969/j.issn.1005-8001.2020.01.006.
[34]
Wang F. The role of spectral CT in assessing the risk of variceal bleeding in cirrhotic patients[D]. Shanghai Jiao Tong University, 2016.
[35]
Han XJ, Zhao LQ, An WM, et al. Study of the association between spleen-related parameters and the degree of esophageal varices using dual energy CT[J]. Comput Tomogr Theory Applicat, 2019, 28(5): 593-600. DOI: 10.15953/j.1004-4140.2019.28.05.09.
[36]
Morisaka H, Motosugi U, Ichikawa T, et al. MR-based measurements of portal vein flow and liver stiffness for predicting gastroesophageal varices[J]. Magn Reson Med Sci, 2013, 12(2): 77-86. DOI: 10.2463/mrms.2012-0052.
[37]
Takahashi T, Kobayashi H, Kuwatsuru R, et al. Magnetic resonance angiography versus endoscopy for the assessment of gastroesophageal varices in biliary atresia[J]. Pediatr Surg Int, 2007, 23(10): 931-4. DOI: 10.1007/s00383-007-1973-z.
[38]
Wu Z, Liang BL, Li Y, et al. The clinical value of 3D dynamic contrast enhanced MR angiography on haemorrhage of esophageal and gastric varices compared with endoscopy. Chin J Radiol, 2010, (4): 401-406. DOI: i0.3760/cma.j.issn.1005—1201.2010,04.018.
[39]
Morisaka H, Motosugi U, Ichikawa H, et al. Association of splenic MR elastographic findings with gastroesophageal varices in patients with chronic liver disease[J]. J Magn Reson Imaging, 2015, 41(1): 117-124. DOI: 10.1002/jmri.24505.
[40]
Jhang ZE, Wu KL, Chen CB, et al. Diagnostic value of spleen stiffness by magnetic resonance elastography for prediction of esophageal varices in cirrhotic patients[J]. Abdom Radiol (NY), 2020, 46(2): 526-533. DOI: 10.1007/s00261-020-02628-x.
[41]
Yoon H, Shin HJ, Kim MJ, et al. Predicting gastroesophageal varices through spleen magnetic resonance elastography in pediatric liver fibrosis[J]. World J Gastroenterol, 2019, 25(3): 367-377. DOI: 10.3748/wjg.v25.i3.367.
[42]
Motosugi U, Roldán-Alzate A, Bannas P, et al. Four-dimensional flow MRI as a marker for risk stratification of gastroesophageal varices in patients with liver cirrhosis[J]. Radiology, 2019, 290(1): 101-107. DOI: 10.1148/radiol.2018180230.
[43]
Abdel Razek AAK, Ali Massoud SM, Abdel Azziz MR, et al. Prediction of esophageal varices in cirrhotic patients with apparent diffusion coefficient of the spleen[J]. Abdom Imaging, 2015, 40(6): 1465-1469. DOI: 10.1007/s00261-015-0391-2.
[44]
Mesropyan N, Isaak A, Faron A, et al. Magnetic resonance parametric mapping of the spleen for non-invasive assessment of portal hypertension[J]. Eur Radiol, 2021, 31(1): 85-93. DOI: 10.1007/s00330-020-07080-5.
[45]
Chen S, Feng S, Wei J, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPAenhanced MRI imaging[J]. Eur Radiol, 2019, 29(8): 4177-4187. DOI: 10.1007/s00330-018-5986-x.
[46]
Ji GW, Zhu FP, Zhang YD, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2019, 29(7): 3725-3735. DOI: 10.1007/s00330-019-06142-7.
[47]
Zheng BH, Liu LZ, Zhang ZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients[J]. BMC Cancer, 2018, 18(1):1148. DOI: 10.1186/s12885-018-5024-z.
[48]
Liu F, Ning Z, Liu Y, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study[J]. EBioMedicine, 2018, 36: 151-158. DOI: 10.1016/j.ebiom.2018.09.023.
[49]
Tseng Y, Ma L, Li S, et al. Application of CT-based radiomics in predicting portal pressure and patient outcome in portal hypertension[J]. Eur J Radiol, 2020 May, 126: 108927. DOI: 10.1016/j.ejrad.2020.108927.
[50]
Shang W, Wei Y, Zhang X, et al. Multiparametric radiomics nomogram may be used for predicting the severity of esophageal varices in cirrhotic patients[J]. Ann Transl Med, 2020, 8(5): 186. DOI: 10.21037/atm.2020.01.122.
[51]
Yang JQ, Zeng R, Cao JM, et al. Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature[J]. Clin Radiol, 2019, 74(12): 976.e1-976.e9. DOI: 10.1016/j.crad.2019.08.028.

PREV Research progress of cardiovascular magnetic resonance in quantitative evaluation of tissue and function of myocardial hypertrophy
NEXT Research progress of multimodal MRI in renal cell carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn