Share:
Share this content in WeChat
X
Review
Research progress of resting-state brain functional network in T2DM patients with cognitive impairment
JIA Qing  HUANG Xiaohua  LIU Nian  JIANG Yu 

Cite this article as: Jia Q, Huang XH, Liu N, et al. Research progress of resting-state brain functional network in T2DM patients with cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(10): 89-92. DOI:10.12015/issn.1674-8034.2021.10.023.


[Abstract] Diabetes mellitus is a metabolic disease with chronic increase in blood glucose and a risk factor for cognitive impairment. The risk of cognitive impairment in patients with type 2 diabetes mellitus (T2DM) is much higher than that in normal subjects, and its pathogenesis and influencing factors are still unclear. At present, a variety of functional magnetic resonance techniques have been widely used in the study of brain neuroscience, especially the resting-state funcyional magnetic resonance imaging (rs-fMRI), which has the advantages of non-ionizing radiation and high spatial resolution of images. This article reviews the research results and progress of resting state magnetic resonance imaging in T2DM with cognitive impairment, and introducing some data research methods and means related to rs-fMRI.
[Keywords] type 2 diabetes mellitus;resting-state functional magnetic resonance imaging;magnetic resonance imaging;brain network;cognitive impairment

JIA Qing   HUANG Xiaohua*   LIU Nian   JIANG Yu  

Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China

Huang XH, E-mail: 15082797553@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Bureau of Science & Teclnology and Intellectual Property Nanchong City (NO. 19SXHZ0429); Scientific research projeet of Affiliated Hospital of North Sichuan Medical College (2020ZD008).
Received  2021-05-21
Accepted  2021-07-12
DOI: 10.12015/issn.1674-8034.2021.10.023
Cite this article as: Jia Q, Huang XH, Liu N, et al. Research progress of resting-state brain functional network in T2DM patients with cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(10): 89-92. DOI:10.12015/issn.1674-8034.2021.10.023.

[1]
Xiong Y, Chen XD, Zhao X, et al. Altered regional homogeneity and functional brain networks in Type 2 diabetes with and without mild cognitive impairment[J]. Scientific Reports, 2020, 10(1): 21254. DOI: 10.1038/s41598-020-76495-3.
[2]
Jia WP, Weng JP, Zhu DL, et al. Standards of medical care for type 2 diabetes in China 2019[J]. Diabetes/Metabolism Research and Reviews, 2019, 35(6): e3158. DOI: 10.1002/dmrr.3158.
[3]
Xu J, Chen FQ, Liu TY, et al. Brain Functional Networks in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study[J]. Frontiers in Neuroscience, 2019, 13: 239. DOI: 10.3389/fnins.2019.00239.
[4]
Profenno LA, Porsteinsson AP, Faraone SV. Meta-Analysis of Alzheimer's Disease Risk with Obesity, Diabetes, and Related Disorders[J]. Biological Psychiatry, 2010, 67(6): 505-512. DOI: 10.1016/j.biopsych.2009.02.013.
[5]
Wu GY, Lin L, Zhang Q, et al. Brain gray matter changes in type 2 diabetes mellitus: A meta-analysis of whole-brain voxel-based morphometry study[J]. Journal of Diabetes and its Complications, 2017, 31(12): 1698-1703. DOI: 10.1016/j.jdiacomp.2017.09.001.
[6]
Wu C, Wang GB, Zhao YX, et al. Assessment of tibial and common peroneal nerves in diabetic peripheral neuropathy by diffusion tensor imaging: a case control study[J]. European Radiology, 2017, 27(8): 3523-3531. DOI: 10.1007/s00330-016-4698-3.
[7]
Cai Q, Lin L, Wang Y,et al.Quantitative detection of posterior cingulate gyrusinjuries and correlation with cognitive function in patients with type 2 diabetesmellitus based on 1H-MRScombined with DTI[J]. Chin J Med Imaging Technol, 2019, 35(6): 812-817. DOI: 10.13929/j.1003-3289.201810110.
[8]
Xiao HS, Li JH, Pan ZL,et al.Advances in neuropsychiatric disorders study based on dynamic brain functional connectivity analysis[J]. Chinese Medical Equipment Journal, 2020, 41(3): 92-97. DOI: 10.19745/j.1003-8868.2020071.
[9]
Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation.[J]. Proceedings of the National Academy of Sciences, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
[10]
Peng J, Luo TY, Chen L,et al.Regional homogeneity in patients with type 2 diabetesusing resting-state functional MRI[J]. Chin J Med Imaging Technol, 2017, 33(1): 6-10. DOI: 10.13929/j.1003-3289.201607051.
[11]
Liu DH, Chen LH, Duan SS, et al. Disrupted Balance of Long- and Short-Range Functional Connectivity Density in Type 2 Diabetes Mellitus: A Resting-State fMRI Study[J]. Frontiers in Neuroscience, 2018, 12: 875. DOI: 10.3389/fnins.2018.00875.
[12]
Peng J, Qu H, Peng J, et al. Abnormal spontaneous brain activity in type 2 diabetes with and without microangiopathy revealed by regional homogeneity[J]. European Journal of Radiology, 2016, 85(3): 607-615. DOI: 10.1016/j.ejrad.2015.12.024.
[13]
Hu B, Yan LF, Sun Q, et al. Disturbed neurovascular coupling in type 2 diabetes mellitus patients: Evidence from a comprehensive fMRI analysis[J]. NeuroImage: Clinical, 2019, 22: 101802. DOI: 10.1016/j.nicl.2019.101802.
[14]
Cui Y, Jiao Y, Chen YC, et al. Altered Spontaneous Brain Activity in Type 2 Diabetes: A Resting-State Functional MRI Study[J]. Diabetes, 2014, 63(2): 749-760. DOI: 10.2337/db13-0519.
[15]
Bai W, Guo W, Chen ZQ.The resting- state functional magnetic resonance imaging (rs-fMRI) study of amplitude of low frequency fluctuation in patients with Type 2 diabetes retinopathy[J]. J Med Imaging, 2018, 28(2): 191-195.
[16]
Wang ZL, Zou L, Lu ZW, et al. Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: a resting-state fMRI study[J]. Clinical Radiology, 2017, 72(4): 340-341. DOI: 10.1016/j.crad.2016.11.012.
[17]
Xia WQ, Wang SH, Sun ZL, et al. Altered baseline brain activity in type 2 diabetes: A resting-state fMRI study[J]. Psychoneuroendocrinology, 2013, 38(11): 2493-2501. DOI: 10.1016/j.psyneuen.2013.05.012.
[18]
Pihlajamaki M, Tanila H, Hanninen T, et al. Verbal fluency activates the left medial temporal lobe: a functional magnetic resonance imaging study[J]. Ann Neurol, 2000, 47(4): 470-476.
[19]
Shi L, Cheng YQ, Xu YS, et al. Effects of hypertension on cerebral cortical thickness alterations in patients with type 2 diabetes[J]. Diabetes Res Clin Pract, 2019, 157: 107872. DOI: 10.1016/j.diabres.2019.107872.
[20]
Yu Y, Yan LF, Sun Q, et al. Neurovascular decoupling in type 2 diabetes mellitus without mild cognitive impairment: Potential biomarker for early cognitive impairment[J]. NeuroImage, 2019, 200: 644-658. DOI: 10.1016/j.neuroimage.2019.06.058.
[21]
Wang Q, Xia JG, Tian WZ.Advances in research on resting brain network functional magnetic resonance imaging for PD with cognitive impairmente[J]. Chin J Magn Reson Imaging, 2020, 11(11): 1044-1047. DOI: 10.12015/issn.1674-8034.2020.11.020.
[22]
Chen Y, Yu CX. Static and dynamic functional connectivity analysis based on resting state functional magnetic resonance imaging and its progress[J]. Chin J Magn Reson Imaging, 2019, 10(8): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
[23]
Zhang Y, Lu S, Liu CL, et al. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis[J]. Scientific Reports, 2016, 6(1): 23767. DOI: 10.1038/srep23767.
[24]
Cui Y, Jiao Y, Chen HJ, et al. Aberrant functional connectivity of default-mode network in type 2 diabetes patients[J]. European Radiology, 2015, 25(11): 3238-3246. DOI: 10.1007/s00330-015-3746-8.
[25]
Liu DH, Duan SS, Zhang JQ, et al. Aberrant Brain Regional Homogeneity and Functional Connectivity in Middle-Aged T2DM Patients: A Resting-State Functional MRI Study[J]. Frontiers in Human Neuroscience, 2016, 10: 490. DOI: 10.3389/fnhum.2016.00490.
[26]
Liu DH, Duan SS, Wei P, et al. Aberrant Brain Spontaneous Activity and Synchronization in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study[J]. Frontiers in Aging Neuroscience, 2020, 12: 181. DOI: 10.3389/fnagi.2020.00181.
[27]
Xia WQ, Luo Y, Chen YC, et al. Disrupted functional connectivity of the amygdala is associated with depressive mood in type 2 diabetes patients[J]. Journal of Affective Disorders, 2018, 228: 207-215. DOI: 10.1016/j.jad.2017.12.012.
[28]
Tan X, Liang Y, Zeng H, et al. Altered functional connectivity of the posterior cingulate cortex in type 2 diabetes with cognitive impairment[J]. Brain Imaging and Behavior, 2019, 13(6): 1699-1707. DOI: 10.1007/s11682-018-0017-8.
[29]
Qi F,Zhang DS,Wang M, et al. Altered functional connectivity between left cerebellum Ⅵ region and whole brain in T2DM patients:aresting-state fMRI study[J]. Radiol Prac, 2020, 35(9): 1091-1095. DOI: 10.13609/j.cnki.1000-0313.2020.09.003.
[30]
Li YF, Liang Y, Tan X, et al. Altered Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Without Mild Cognitive Impairment[J]. Frontiers in Neurology, 2020, 11: 1016. DOI: 10.3389/fneur.2020.01016.
[31]
Zhang DS, Gao J, Yan XJ, et al. Altered functional connectivity of brain regions based on a meta-analysis in patients with T2DM: A resting-state fMRI study[J]. Brain Behav, 2020, 10(8): e1725. DOI: 10.1002/brb3.1725.
[32]
Liao XH, Vasilakos AV, He Y. Small-world human brain networks: Perspectives and challenges[J]. Neuroscience & Biobehavioral Reviews, 2017, 77: 286-300. DOI: 10.1016/j.neubiorev.2017.03.018.
[33]
Rodríguez-Cruces R, Bernhardt BC, Concha L. Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy[J]. NeuroImage, 2020, 213: 116706. DOI: 10.1016/j.neuroimage.2020.116706.
[34]
Erdeniz B, Serin E, İbadi Y, et al. Decreased functional connectivity in schizophrenia: The relationship between social functioning, social cognition and graph theoretical network measures[J]. Psychiatry Research: Neuroimaging, 2017, 270: 22-31. DOI: 10.1016/j.pscychresns.2017.09.011.
[35]
Qin CH, Liang Y, Tan X, et al. Altered Whole-Brain Functional Topological Organization and Cognitive Function in Type 2 Diabetes Mellitus Patients[J]. Frontiers in Neurology, 2019, 10: 599. DOI: 10.3389/fneur.2019.00599.
[36]
Xia MR, Wang JH, He Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics[J]. PLoS ONE, 2013, 8(7): e68910. DOI: 10.1371/journal.pone.0068910.
[37]
Huang HY, Zhang Y,Cheng JL,et al.Progresses of brain function,network and degreecentrality of long-term smokers[J]. Chin J Med Imaging Techno, 2020, 36(6): 932-935. DOI: 10.13929/j.issn.1003-3289.2020.0033.
[38]
Xia WQ, Luo Y, Chen YC, et al. Glucose Fluctuations Are Linked to Disrupted Brain Functional Architecture and Cognitive Impairment[J]. Journal of Alzheimer's Disease, 2020, 74(2): 603-613. DOI: 10.3233/JAD-191217.
[39]
Liu DH, Duan SS, Zhou CY, et al. Altered Brain Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Patients: A Resting-State fMRI Study[J]. Frontiers in Aging Neuroscience, 2018, 10:55. DOI: 10.3389/fnagi.2018.00055.

PREV Application of machine learning in the diagnosis of brain dysfunction by magnetic resonance imaging
NEXT Progress of cardiovascular magnetic resonance diffusion tensor imaging and diffusion spectrum magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn