Share:
Share this content in WeChat
X
Clinical Article
Preliminary study of quantitative susceptibility mapping in the brain iron deposition of unilateral middle cerebral artery stenosis or occlusion
MAO Huimin  WANG Xinyi  CHEN Kunjian  GUO Yu  WANG Xinyu 

Cite this article as: Mao HM, Wang XY, Chen KJ, et al. Preliminary study of quantitative susceptibility mapping in the brain iron deposition of unilateral middle cerebral artery stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2021, 12(11): 16-20. DOI:10.12015/issn.1674-8034.2021.11.004.


[Abstract] Objective The MR quantitative susceptibility mapping (QSM) was used to explore the iron deposition of brain gray matter nucleus in patients with unilateral middle cerebral artery (MCA) stenosis or occlusion.Materials and Methods: Thirty-three patients with unilateral MCA stenosis or occlusion underwent QSM and conventional MRI scan by GE 3.0 T MR. After processing the original images, QSM images were obtained. Susceptibility values of bilateral caudate nucleus, putamen, globus pallidus and thalamus were measured and compared between the lesion side and the contralateral side by paired sample t-test. According to the degree of lumen stenosis, the 33 patients were divided into mild and moderate stenosis group, severe stenosis group and occlusion group. One-way analysis of variance was used to compare the differences of susceptibility values of gray matter nucleus in the three groups.Results There was significant difference in susceptibility values of caudate nucleus, putamen and globus pallidus between the lesion side and the contralateral side in 33 subjects (P<0.05), while there was no significant difference in susceptibility values of thalamus on both sides (P>0.05). And there was no statistical significance among the above three groups (P>0.05).Conclusions The QSM technique found that the iron content in gray matter nucleus of the lesion side in patients with unilateral MCA stenosis or occlusion was higher than the contralateral side, which further deepens the understanding of the pathophysiological changes of ischemic stroke and provides guidance for clinical treatment and improvement of the prognosis of ischemic stroke.
[Keywords] middle cerebral artery stenosis or occlusion;ischemic stroke;magnetic resonance imaging;quantitative susceptibility mapping;iron deposition

MAO Huimin1, 2   WANG Xinyi1*   CHEN Kunjian1, 2   GUO Yu1, 2   WANG Xinyu1, 2  

1 Department of Radiology, the First Affiliated Hospital of Shandong First Medical University (Shandong Province Qianfoshan Hospital), Jinan 250014, China

2 Shandong First Medical University, Tai'an 271000, China

Wang XY, E-mail: wxy_88@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Shandong Science and Technology Development Plan Project (No. 2009GG10002024).
Received  2021-07-01
Accepted  2021-08-04
DOI: 10.12015/issn.1674-8034.2021.11.004
Cite this article as: Mao HM, Wang XY, Chen KJ, et al. Preliminary study of quantitative susceptibility mapping in the brain iron deposition of unilateral middle cerebral artery stenosis or occlusion[J]. Chin J Magn Reson Imaging, 2021, 12(11): 16-20. DOI:10.12015/issn.1674-8034.2021.11.004.

[1]
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives[J]. Int J Mol Sci, 2020, 21(20): 7609. DOI: 10.3390/ijms21207609.
[2]
Ran YC, Wang YT, Zhu M, et al. Higher plaque burden of middle cerebral artery is associated with recurrent ischemic stroke: a quantitative magnetic resonance imaging study[J]. Stroke, 2020, 51(2): 659-662. DOI: 10.1161/STROKEAHA.119.028405.
[3]
Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options[J]. Curr Neuropharmacol, 2018, 16(9): 1396-1415. DOI: 10.2174/1570159X16666180302115544.
[4]
Fang KM, Cheng FC, Huang YL, et al. Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury[J]. Biol Trace Elem Res, 2013, 152(1): 66-74. DOI: 10.1007/s12011-012-9596-1.
[5]
Park UJ, Lee YA, Won SM, et al. Blood-derived iron mediates free radical production and neuronal death in the hippocampal CA1 area following transient forebrain ischemia in rat[J]. Acta Neuropathol, 2011, 121(4): 459-473. DOI: 10.1007/s00401-010-0785-8.
[6]
Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke[J]. Mol Psychiatry, 2017, 22(11): 1520-1530. DOI: 10.1038/mp.2017.171.
[7]
Kosyakovsky J, Fine JM, Frey WH, et al. Mechanisms of intranasal deferoxamine in neurodegenerative and neurovascular disease[J]. Pharmaceuticals (Basel), 2021, 14(2): 95. DOI: 10.3390/ph14020095.
[8]
Li D, Wang XC. Application of quantitative magnetic susceptibility weighted imaging in acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2018, 9 (4): 284-288. DOI: 10.12015/issn.1674-8034.2018.04.009.
[9]
Li DX, Dai B, Xiong ZL, et al. Feasibility of quantitatiVe measurement of brain iron by Brainnetome Atlas based on magnetic susceptibiIity mapping[J]. Chin J Med Imaging Technol, 2020, 36(7): 991-995. DOI: 10.13929/j.issn.1003-3289.2020.07.009.
[10]
Vinayagamani S, Sheelakumari R, Sabarish S, et al. Quantitative susceptibility mapping: technical considerations and clinical applications in neuroimaging[J]. J Magn Reson Imaging, 2021, 53(1): 23-37. DOI: 10.1002/jmri.27058.
[11]
Tang SX, Zuo LJ, Zhang W, et al. A quantitative study about iron content of the cerebral nucleus in patients with Parkinson's disease[J]. Chin J Magn Reson Imaging, 2016, 7(9): 647-650. DOI: 10.12015/issn.1674-8034.2016.09.002.
[12]
Chinese Medical Association Neurology Branch, Chinese Medical Association Neurology Branch Cerebrovascular Diseases Group.Chinese guidelines for diagnosis and treatment of acute ischemic stroke 2014[J]. Chin J Neurol, 2015, 48(2): 246-257. DOI: 10.3760/cma.j.issn.1006-7876.2015.04.002.
[13]
Boudiaf N, Attyé A, Warnking JM, et al. BOLD fMRI of cerebrovascular reactivity in the middle cerebral artery territory: a 100 volunteers' study[J]. J Neuroradiol, 2015, 42(6): 338-344. DOI: 10.1016/j.neurad.2015.04.004.
[14]
Du L, Zhao ZF, Liu XX, et al. Alterations of iron level in the bilateral basal ganglia region in patients with middle cerebral artery occlusion[J]. Front Neurosci, 2021, 14: 608058. DOI: 10.3389/fnins.2020.608058.
[15]
Zhou HT, Huang C, Liu RH, et al. Lack of association between serum homocysteine level and middle cerebral artery stenosis[J]. Brain Behav, 2019, 9(8): e01297. DOI: 10.1002/brb3.1297.
[16]
Geng WJ, Cai LB, Han KY, et al. Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury by increasing GSK-3β phosphorylation level via adenosine A1 receptor[J]. Biomed Res Int, 2020, 2020(7): 1-9. DOI: 10.1155/2020/6848450.
[17]
Connor JR, Menzies SL, Burdo JR, et al. Iron and iron management proteins in neurobiology[J]. Pediatr Neurol, 2001, 25(2): 118-129. DOI: 10.1016/s0887-8994(01)00303-4.
[18]
Chiou B, Neal EH, Bowman AB, et al. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier[J]. J Cereb Blood Flow Metab, 2019, 39(11): 2117-2131. DOI: 10.1177/0271678X18783372.
[19]
Campos-Escamilla C. The role of transferrins and iron-related proteins in brain iron transport: applications to neurological diseases[J]. Adv Protein Chem Struct Biol, 2021, 123: 133-162. DOI: 10.1016/bs.apcsb.2020.09.002.
[20]
Derry PJ, Hegde ML, Jackson GR, et al. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective[J]. Prog Neurobiol, 2020, 184: 101716. DOI: 10.1016/j.pneurobio.2019.101716.
[21]
Rao SS, Adlard PA. Untangling tau and iron: exploring the interaction between iron and tau in neurodegeneration[J]. Front Mol Neurosci, 2018, 11: 276. DOI: 10.3389/fnmol.2018.00276.
[22]
Chamorro Á, Dirnagl U, Urra X, et al. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation[J]. Lancet Neurol, 2016, 15(8): 869-881. DOI: 10.1016/S1474-4422(16)00114-9.
[23]
Ding H, Yan CZ, Shi H, et al. Hepcidin is involved in iron regulation in the ischemic brain[J]. PLoS One, 2011, 6(9): e25324. DOI: 10.1371/journal.pone.0025324.
[24]
Rathore KI, Redensek A, David S. Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1[J]. Glia, 2012, 60(5): 738-750. DOI: 10.1002/glia.22303.
[25]
Nagy Z, Nardai S. Cerebral ischemia/repefusion injury: from bench space to bedside[J]. Brain Res Bull, 2017, 134: 30-37. DOI: 10.1016/j.brainresbull.2017.06.011.
[26]
Liu J, Guo ZN, Yan XL, et al. Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke[J]. Front Cell Neurosci, 2020, 14: 577403. DOI: 10.3389/fncel.2020.577403.
[27]
García-Yébenes I, García-Culebras A, Peña-Martínez C, et al. Iron overload exacerbates the risk of hemorrhagic transformation after tPA (tissue-type plasminogen activator) administration in thromboembolic stroke mice[J]. Stroke, 2018, 49(9): 2163-2172. DOI: 10.1161/STROKEAHA.118.021540.
[28]
Millan M, Sobrino T, Castellanos M, et al. Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke[J]. Stroke, 2007, 38(1): 90-95. DOI: 10.1161/01.STR.0000251798.25803.e0.
[29]
Hanafy KA, Gomes JA, Selim M. Rationale and current evidence for testing iron chelators for treating stroke[J]. Curr Cardiol Rep, 2019, 21(4): 20. DOI: 10.1007/s11886-019-1106-z.

PREV Study on plaque characteristics of basilar artery with mild and severe curvature based on HR-MRI
NEXT A preliminary study of cardiac magnetic resonance myocardial strain technique in the left atrium of normal male smokers
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn