Share:
Share this content in WeChat
X
Original Article
Cerebellar-cortical functional connectivity abnormalities in individuals with nicotine dependence
ZHANG Mengzhe  GAO Xinyu  YANG Zhengui  HUANG Huiyu  WEN Mengmeng  WANG Weijian  CHENG Jingliang  ZHANG Yong  XU Ke 

Cite this article as: Zhang MZ, Gao XY, Yang ZG, et al. Cerebellar-cortical functional connectivity abnormalities in individuals with nicotine dependence[J]. Chin J Magn Reson Imaging, 2021, 12(11): 42-45. DOI:10.12015/issn.1674-8034.2021.11.009.


[Abstract] Objective To explore the neuromechanism of nicotine dependence (ND), this study used resting-state functional magnetic resonance imaging (rs-fMRI) to analyze cerebellar-cortical functional connectivity (FC) abnormalities in long-term smokers.Materials and Methods: One hundred and seventeen long-term smokers and 52 non-smoking volunteers matched with age and education were recruited through the network platform. Using rs-fMRI data, we chose bilateral CrusⅠ as the region of interest (ROI), and calculated the FC between bilateral CrusⅠ and other brain regions to compare the differences of cerebellar-cortical FC between smokers and healthy controls (HCs).Results Compared with HCs, we found increased FC between the left CrusⅠ and brain regions involved in the default mode network (DMN), sensory and motor system in smokers (t=3.56, clusters≥20). The FC between right CrusⅠand cortex in smokers were not significantly different from those in HCs.Conclusions Long-term smokers showed multiple abnormalities in cerebellar-cortical functional connectivity, and these may be the underlying neuromechanism of nicotine dependence, which are associated with automatized smoking behavior, cognitive and attention deficits.
[Keywords] nicotine;functional connectivity;cerebellum;default mode network;magnetic resonance imaging

ZHANG Mengzhe   GAO Xinyu   YANG Zhengui   HUANG Huiyu   WEN Mengmeng   WANG Weijian   CHENG Jingliang   ZHANG Yong*   XU Ke  

Department of Magnetic Resonance, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

Zhang Y, E-mail: zzuzhangyong2013@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Joint Construction Project of Henan Medical Science and Technology (No. LHGJ20200381).
Received  2021-05-07
Accepted  2021-08-06
DOI: 10.12015/issn.1674-8034.2021.11.009
Cite this article as: Zhang MZ, Gao XY, Yang ZG, et al. Cerebellar-cortical functional connectivity abnormalities in individuals with nicotine dependence[J]. Chin J Magn Reson Imaging, 2021, 12(11): 42-45. DOI:10.12015/issn.1674-8034.2021.11.009.

[1]
Yang ZG, Zhang Y, Cheng JL, et al. Meta-analysis of brain gray matter changes in chronic smokers[J]. Eur J Radiol, 2020, 132: 109300. DOI: 10.1016/j.ejrad.2020.109300.
[2]
Sathyanesan A, Zhou J, Scafidi J, et al. Emerging connections between cerebellar development, behaviour and complex brain disorders[J]. Nat Rev Neurosci, 2019, 20(5): 298-313. DOI: 10.1038/s41583-019-0152-2.
[3]
Kim DJ, Moussa-Tooks AB, Bolbecker AR, et al. Cerebellar-cortical dysconnectivity in resting-state associated with sensorimotor tasks in schizophrenia[J]. Hum Brain Mapp, 2020, 41(11): 3119-3132. DOI: 10.1002/hbm.25002.
[4]
Buckner RL, Krienen FM, Castellanos A, et al. The organization of the human cerebellum estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(5): 2322-2345. DOI: 10.1152/jn.00339.2011.
[5]
Turner JR, Kellar KJ. Nicotinic cholinergic receptors in the rat cerebellum: multiple heteromeric subtypes[J]. J Neurosci, 2005, 25(40): 9258-9265. DOI: 10.1523/JNEUROSCI.2112-05.2005.
[6]
Chen WJ, Edwards RB, Romero RD, et al. Long-term nicotine exposure reduces Purkinje cell number in the adult rat cerebellar vermis[J]. Neurotoxicol Teratol, 2003, 25(3): 329-334. DOI: 10.1016/s0892-0362(02)00350-1.
[7]
Shen ZJ, Huang PY, Wang C, et al. Cerebellar gray matter reductions associate with decreased functional connectivity in nicotine-dependent individuals[J]. Nicotine Tob Res, 2018, 20(4): 440-447. DOI: 10.1093/ntr/ntx168.
[8]
Peng P, Li M, Liu H, et al. Brain structure alterations in respect to tobacco consumption and nicotine dependence: a comparative voxel-based morphometry study[J]. Front Neuroanat, 2018, 12: 43. DOI: 10.3389/fnana.2018.00043.
[9]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders[M]. 5th ed. Arlington: American Psychiatric Publishing, 2013.
[10]
Ely AV, Jagannathan K, Hager N, et al. Double jeopardy: comorbid obesity and cigarette smoking are linked to neurobiological alterations in inhibitory control during smoking cue exposure[J]. Addict Biol, 2020, 25(2): e12750. DOI: 10.1111/adb.12750.
[11]
Zhang Y, Li YL, Cheng JL, et al. Resting-state network evaluation of chronic smokers by functional magnetic resonance imaging[J]. Nat Med J Chin, 2017, 97(47): 3724-3728. DOI: 10.3760/cma.j.issn.0376-2491.2017.47.009.
[12]
Le Berre AP, Rauchs G, La Joie R, et al. Impaired decision-making and brain shrinkage in alcoholism[J]. Eur Psychiatry, 2014, 29(3): 125-133. DOI: 10.1016/j.eurpsy.2012.10.002.
[13]
Huang W, King JA, Ursprung WW, et al. The development and expression of physical nicotine dependence corresponds to structural and functional alterations in the anterior cingulate-precuneus pathway[J]. Brain Behav, 2014, 4(3): 408-417. DOI: 10.1002/brb3.227.
[14]
Wang C, Wang SY, Shen ZJ, et al. Increased thalamic volume and decreased thalamo-precuneus functional connectivity are associated with smoking relapse[J]. Neuroimage Clin, 2020, 28: 102451. DOI: 10.1016/j.nicl.2020.102451.
[15]
Zhang Y, Li YL, Cheng JL, et al. Evaluation of default mode network in chronic smokers at resting state[J]. J Clin Radiol, 2018, 37(6): 900-903. DOI: 10.13437/j.cnki.jcr.2018.06.002.
[16]
Luijten M, Veltman DJ, van den Brink W, et al. Neurobiological substrate of smoking-related attentional bias[J]. Neuroimage, 2011, 54(3): 2374-2381. DOI: 10.1016/j.neuroimage.2010.09.064.
[17]
Jacobsen LK, Mencl WE, Constable RT, et al. Impact of smoking abstinence on working memory neurocircuitry in adolescent daily tobacco smokers[J]. Psychopharmacology (Berl), 2007, 193(4): 557-566. DOI: 10.1007/s00213-007-0797-9.
[18]
Yalachkov Y, Kaiser J, Naumer MJ. Sensory and motor aspects of addiction[J]. Behav Brain Res, 2010, 207(2): 215-222. DOI: 10.1016/j.bbr.2009.09.015.
[19]
Qin K, Zhang FF, Chen TL, et al. Shared gray matter alterations in individuals with diverse behavioral addictions: a voxel-wise meta-analysis[J]. J Behav Addict, 2020, 9(1): 44-57. DOI: 10.1556/2006.2020.00006.
[20]
Yalachkov Y, Kaiser J, Naumer MJ. Brain regions related to tool use and action knowledge reflect nicotine dependence[J]. J Neurosci, 2009, 29 (15): 4922-4929. DOI: 10.1523/jneurosci.4891-08.2009.
[21]
Lin FC, Han X, Wang Y, et al. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity[J]. Brain Imaging Behav, 2021, 15(1): 1-13. DOI: 10.1007/s11682-019-00227-z.
[22]
Bagga D, Aigner CS, Cecchetto C, et al. Investigating sex-specific characteristics of nicotine addiction using metabolic and structural magnetic resonance imaging[J]. Eur Addict Res, 2018, 24(6): 267-277. DOI: 10.1159/000494260.
[23]
McCarthy JM, Dumais KM, Zegel M, et al. Sex differences in tobacco smokers: executive control network and frontostriatal connectivity[J]. Drug Alcohol Depend, 2019, 195: 59-65. DOI: 10.1016/j.drugalcdep.2018.11.023.

PREV Clinical value of MRI-based scoring system in predicting placenta accreta spectrum disorders
NEXT Correlative analysis of glycemic variability and brain stracture and cognitive function in type 2 diabetic patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn