Share:
Share this content in WeChat
X
Review
Research progress of functional magnetic resonance imaging of resting brain network in supplementary motor area of Parkinson's disease
YANG Wenrui  CHEN Hongri  LI Qingrun  YANG Li  ZHANG Hongying 

Cite this article as: Yang WR, Chen HR, Li QR, et al. Research progress of functional magnetic resonance imaging of resting brain network in supplementary motor area of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 90-93. DOI:10.12015/issn.1674-8034.2021.11.022.


[Abstract] Resting functional magnetic resonance imaging (rs-fMRI) has been extensively applied to analyze the pathophysiology of neurodegenerative disorders such as Parkinson's disease (PD). The symptoms of patients with Parkinson's disease include motor symptoms and non-motor symptoms. Supplementary motor area (SMA) is related to the pathophysiology of Parkinson's disease. In this review, we summarize rs-fMRI studies related to SMA in PD patients, reflecting changes in brain network reorganization and adaptation to track and predict the progression of Parkinson's disease.
[Keywords] functional magnetic resonance imaging;Parkinson's disease;supplementary motor area;functional connection;brain network

YANG Wenrui1, 2   CHEN Hongri1, 2   LI Qingrun1, 2   YANG Li1, 2   ZHANG Hongying2*  

1 Graduate School of Dalian Medical University, Dalian 116044, China

2 Department of Radiology, Subei People's Hospital of Jiangsu Province, Yangzhou 225001, China

Zhang HY, E-mail: zhying11@aliyun.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Natural Science Foundation of China (No. 81471642).
Received  2021-05-28
Accepted  2021-07-30
DOI: 10.12015/issn.1674-8034.2021.11.022
Cite this article as: Yang WR, Chen HR, Li QR, et al. Research progress of functional magnetic resonance imaging of resting brain network in supplementary motor area of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 90-93. DOI:10.12015/issn.1674-8034.2021.11.022.

[1]
Tysnes OB, Storstein A. Epidemiology of Parkinson's disease[J]. J Neural Transm, 2017, 124(8): 901-905. DOI: 10.1007/s00702-017-1686-y.
[2]
Garcia-Ruiz PJ, Chaudhuri KR, Martinez-Martin P. Non-motor symptoms of Parkinson's disease a review from the past[J]. J Neurol Sci, 2014, 338(1-2): 30-33. DOI: 10.1016/j.jns.2014.01.002.
[3]
Hauser RA, Rascol O, Korczyn AD, et al. Ten-year follow-up of Parkinson's disease patients randomized to initial therapy with ropinirole or levodopa[J]. Movement Disord, 2007, 22(16): 2409-2417. DOI: 10.1002/mds.21743.
[4]
Wei LP, Hu X, Zhu YJ, et al. Aberrant intra- and internetwork functional connectivity in depressed Parkinson's disease[J]. Sci Rep, 2017, 7(1): 2568. DOI: 10.1038/s41598-017-02127-y.
[5]
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nat Rev Neurosci, 2007, 8(9): 700-711. DOI: 10.1038/nrn2201.
[6]
Luo SC, Luo ZB, Luo XD, et al. The study of resting state functional magnetic resonance on brain function in generalized anxiety disorder[J]. J Clin Radiol, 2018, 37(9): 1427-1430.
[7]
Yuan YM, Zhang L, Zhang ZG. Analysis and clinical application of dynamic functional connectivity based on resting state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2018, 9(8):579-588. DOI: 10.12015/issn.1674-8034.2018.08.005.
[8]
Cunnington R, Windischberger C, Deecke L, et al. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI[J]. NeuroImage, 2002, 15(2):373-385. DOI: 10.1006/nimg.2001.0976.
[9]
Chaudhuri A, Behan PO. Fatigue and basal ganglia[J]. J Neurol Sci, 2000, 179(1-2): 34-42. DOI: 10.1016/S0022-510X(00)00411-1.
[10]
Kim JH, Lee JM, Jo HJ, et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: Functional connectivity-based parcellation method[J]. NeuroImage, 2010, 49(3): 2375-2386. DOI: 10.1016/j.neuroimage.2009.10.016.
[11]
Wu T, Long XY, Wang L, et al. Functional connectivity of cortical motor areas in the resting state in Parkinson's disease[J]. Hum Brain Mapp, 2011, 32(9): 1443-1457. DOI: 10.1002/hbm.21118.
[12]
Wang JW, Jia YF, Zhang KZ, et al. A study on resting-state functional connectivity MRI of tremor-dominant and postural instability gait disturbances subtype Parkinson's disease[J]. J Clinical Radiology, 2020, 39(8): 1487-1492.
[13]
Canu E, Agosta F, Sarasso E, et al. Brain structural and functional connectivity in Parkinson's disease with freezing of gait[J]. Hum Brain Mapp, 2015, 36(12): 5064-5078. DOI: 10.1002/hbm.22994.
[14]
Agosta F, Caso F, Stankovic I, et al. Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism[J]. Neurobiol Aging, 2014, 35(11): 2592-2602. DOI: 10.1016/j.neurobiolaging.2014.05.032.
[15]
Baudrexel S, Witte T, Seifried C, et al. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease[J]. Neuroimage, 2011, 55(4): 1728-1738. DOI: 10.1016/j.neuroimage.2011.01.017.
[16]
Suo XL, Lei D, Li NN, et al. Functional brain connectome and its relation to hoehn and yahr stage in parkinson disease[J]. Radiology, 2017, 285(3): 904-913. DOI: 10.1148/radiol.2017162929.
[17]
de Schipper LJ, Hafkemeijer A, Grond JVD, et al. Altered whole-brain and network-based functional connectivity in parkinson's disease[J]. Front Neurol, 2018, 9: 419. DOI: 10.3389/fneur.2018.00419.
[18]
Tuovinen N, Seppi K, Pasquale FD, et al. The reorganization of functional architecture in the early-stages of Parkinson's disease[J]. Parkinsonism Relat D, 2018, 50: 61-68. DOI: 10.1016/j.parkreldis.2018.02.013.
[19]
Esposito F, Tessitore A, Giordano A, et al. Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson's disease by levodopa[J]. Brain, 2013, 136(3): 710-725. DOI: 10.1093/brain/awt007.
[20]
Hensel L, Hoffstaedter F, Caspers J, et al. Functional connectivity changes of key regions for motor initiation in Parkinson's disease[J]. Cereb Cortex, 2019, 29(1): 383-396. DOI: 10.1093/cercor/bhy259.
[21]
Thibes RB, Novaes NP, Lucato LT, et al. Altered functional connectivity between precuneus and motor systems in Parkinson's disease patients[J]. Brain Connect, 2017, 7(10): 643-647. DOI: 10.1089/brain.2017.0534.
[22]
Wang SW, Lei JQ, Guo SL. Research of Motor control and regulation functional network in parkinson disease and clinical correlation analysis[J]. J Clinical Radiology, 2020, 39(3): 435-439. DOI: 10.13437/j.cnki.jcr.2020.03.003.
[23]
Pan Y, Qu H, Zhao Y, et al. Functional network connectivity analysis in sensorimotor area of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(4): 6-11. DOI: 10.12015/issn.1674-8034.2021.04.002.
[24]
Wang SW, Zhang YL, Lei JQ, et al. Investigation of sensorimotor dysfunction in Parkinson disease by resting-state fMRI[J]. Neurosci Lett, 2021, 742: 135512. DOI: 10.1016/j.neulet.2020.135512.
[25]
Filippi M, Elisabetta S, Piramide N, et al. Chapter fourteen: functional MRI in idiopathic Parkinson's disease[J]. Int Rev Neurobiol, 2018, 141: 439-467. DOI: 10.1016/bs.irn.2018.08.005.
[26]
Agosta F, Caso F, Stankovic I, et al. Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism[J]. Neurobiol Aging, 2014, 35(11): 2592-2602. DOI: 10.1016/j.neurobiolaging.2014.05.032.
[27]
Haslinger B, Erhard P, Kämpfe N, et al. Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa[J]. Brain, 2001, 124(3): 558-570. DOI: 10.1093/brain/124.3.558.
[28]
Buhmann C, Glauche V, Stürenburg HJ, et al. Pharmacologically modulated fMRI: cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients[J]. Brain, 2003, 126(2): 451-461. DOI: 10.1093/brain/awg033.
[29]
Grafton ST. Contributions of functional imaging to understanding parkinsonian symptoms[J]. Curr Opin Neurobiol, 2004, 14(6): 715-719. DOI: 10.1016/j.conb.2004.10.010.
[30]
Skidmore FM, Yang M, Baxter L, et al. Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease[J]. Neuroimage, 2013, 81: 484-495. DOI: 10.1016/j.neuroimage.2011.07.012.
[31]
Wang HS. Altered resting-state voxel-level whole-brain functional connectivity in depressed parkinson's diswase[D]. Chong Qing Medical University, 2018.
[32]
Liao HY, Fan J, Shen Q, et al. Alterations of interhemispheric functional connectivity in Parkinson's disease with depression: a resting-state functional MRI study[J]. Front Hum Neurosci, 2020, 14: 193. DOI: 10.3389/fnhum.2020.00193.
[33]
Tessitore A, Amboni M, Esposito F, et al. Resting-state brain connectivity in patients with Parkinson's disease and freezing of gait[J]. Parkinsonism Relat Disord, 2012, 18(6), 781-787. DOI: 10.1016/j.parkreldis.2012.03.018.
[34]
Siciliano M, De Micco R, Giordano A, et al. Supplementary motor area functional connectivity in "drug-naïve" Parkinson's disease patients with fatigue[J]. J Neural Transm, 2020, 127(8): 1133-1142. DOI: 10.1007/s00702-020-02219-6.
[35]
Zhang WW, Chen Peng, Jiang ML, et al. Alternation of amplitude of low-frequency fluctuation and functional connectivity in the patients of Parkinson's disease with working memory impairment: a resting-state fMRI study[J]. Chin J Contemp Neurol Neurosurg, 2020, (12): 1037-1044.
[36]
Peng QJ, Wang YF, Tan J, et al. Study of fMRI of brain networks of patients with Parkinson's disease accompanied by cognition impairment[J]. Alzheimer's disease, 2020, 3(4): 267-273. DOI: 10.3969/j.issn.2096-5516.2020.04.002.
[37]
Li JY, Yuan YS, Wang M, et al. Alterations in regional homogeneity of resting-state brain activity in fatigue of Parkinson's disease[J]. J Neural Transm, 2017, 124(10): 1187-1195. DOI: 10.1007/s00702-017-1748-1.
[38]
Tanaka M, Ishii A, Watanabe Y. Physical fatigue increases neural activation during eyes-closed state: a magnetoencephalography study[J]. Behav Brain Funct, 2015, 11(1): 35. DOI: 10.1186/s12993-015-0079-3.
[39]
Hely MA, Reid WGJ, Adena MA, et al. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years[J]. J Mov Disord, 2008, 23(6): 837-844. DOI: 10.1002/mds.21956.
[40]
Cirarda MD, Strafella AP, Kim J, et al. Dynamic functional connectivity in Parkinson's disease patients with mild cognitive impairment and normal cognition[J]. Neuroimage Clin, 2018, 17: 847-855. DOI: 10.1016/j.nicl.2017.12.013.
[41]
Duncan GW, Firbank MJ, O'Brien JT, et al. Magnetic resonance imaging: a biomarker for cognitive impairment in Parkinson's disease?[J]. J Mov Disord, 2013, 28(4): 425-438. DOI: 10.1002/mds.25352.
[42]
Vo A, Sako W, Fujita K, et al. Parkinson's disease-related network topographies characterized with resting state functional MRI[J]. Hum Brain Mapp, 2017, 38(2): 617-630. DOI: 10.1002/hbm.23260.
[43]
Long D, Wang JW, Xuan M, et al. Automatic classification of early Parkinson's disease with multi-modal MR imaging[J]. PloS One, 2012, 7(11): 47714. DOI: 10.1371/journal.pone.0047714.
[44]
Subramanian L, Morris MB, Brosnan M, et al. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson's Disease: Randomized Trial[J]. Front Behav Neurosci, 2016, 8: 111. DOI: 10.3389/fnbeh.2016.00111.
[45]
N.McDonnell M, M.Stinear C. TMS measures of motor cortex function after stroke: a Meta-analysis[J]. Brain Stimul, 2017, 10(4): 721-734. DOI: 10.1016/j.brs.2017.03.008.
[46]
Hanakawa T. Organizing motor imageries[J]. Neurosci Res, 2016, 104: 56-63. DOI: 10.1016/j.neures.2015.11.003.

PREV A case of mature teratoma of ovary with peritoneal gliomatosis and literature review
NEXT Magnetic resonance research progress in amnestic mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn