Share:
Share this content in WeChat
X
Review
Advances in brain magnetic resonance imaging of postpartum depression
LI Yuna  MAO Ning  XIE Haizhu  CHE Kaili  CHU Tongpeng 

Cite this article as: Li YN, Mao N, Xie HZ, et al. Advances in brain magnetic resonance imaging of postpartum depression[J]. Chin J Magn Reson Imaging, 2021, 12(11): 101-104, 108. DOI:10.12015/issn.1674-8034.2021.11.025.


[Abstract] At present, the pathogenesis of central nervous system of postpartum depression (PPD) is not clear, and there is a lack of objective indicators for diagnosis and prognosis. The continuous development of MRI technology provides an important tool for in-depth study of the neuropathological mechanism and neuroimaging abnormalities of PPD. This paper makes a literature investigation and summary on the brain imaging research of patients with PPD by multi-modal MRI technology, in order to help clinicians understand its progress.
[Keywords] postpartum depression;brain function;advances;magnetic resonance imaging, multimodal;functional magnetic resonance imaging

LI Yuna   MAO Ning   XIE Haizhu*   CHE Kaili   CHU Tongpeng  

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China

Xie HZ, Email: xhz000417@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82001775).
Received  2021-05-14
Accepted  2021-08-06
DOI: 10.12015/issn.1674-8034.2021.11.025
Cite this article as: Li YN, Mao N, Xie HZ, et al. Advances in brain magnetic resonance imaging of postpartum depression[J]. Chin J Magn Reson Imaging, 2021, 12(11): 101-104, 108. DOI:10.12015/issn.1674-8034.2021.11.025.

[1]
Shi X, Ying YW, Yu ZL, et al. Risk factors for postpartum depression in Chinese women: a cross-sectional study at 6 weeks postpartum[J]. J Psychosom Res, 2021, 140: 110295. DOI: 10.1016/j.jpsychores.2020.110295.
[2]
Angela O,Anita H,Nadeem S,et al. Change in brain size during and after pregnancy: study in healthy women and women with reeclampsia[J]. AJNR Am J Neuroradiol, 2002, 23(1): 16-29. DOI: 10.1097/01.WAD.0000025468.36316.52.
[3]
Hoekzema E, Barba-Muller E, Pozzobon C, et al. Pregnancy leads to long-lasting changes in human brain structure[J]. Nat Neurosci, 2017, 20(2): 287-296. DOI: 10.1038/nn.4458.
[4]
Kim P, Leckman JF, Mayes LC, et al. The plasticity of human maternal brain: longitudinal chan ges in brain anatomy during the early postpartum period[J]. Behav Neurosci, 2010, 124(5): 695-700. DOI: 10.1037/a0020884.
[5]
Howard DM, Adams MJ, Clarke TK, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions[J]. Nat Neurosci, 2019, 22(3): 343-352. DOI: 10.1038/s41593-018-0326-7.
[6]
Pechtel P, Murray LMM, Brumariu LE, et al. Reactivity, regulation, and reward responses to infant cues among mothers with and without psychopathology: an fMRI review[J]. Transl Dev Psychiatry, 2013, 1(1). DOI: 10.3402/tdp.v1i0.19673.
[7]
Li Y, Chu TP, Che KL, et al. Abnormalities of cortical structures in patients with postpartum depression: a surface-based morphometry study[J]. Behav Brain Res, 2021, 410: 113340. DOI: 10.1016/j.bbr.2021.113340.
[8]
Silver M, Moore CM, Villamarin V, et al. White matter integrity in medication-free women with peripartum depression: a tract-based spatial statistics study[J]. Neuropsychopharmacology, 2018, 43(7): 1573-1580. DOI: 10.1038/s41386-018-0023-y.
[9]
Sasaki Y, Ito K, Fukumoto K, et al. Cerebral diffusion kurtosis imaging to assess the pathophysiology of postpartum depression[J]. Sci Rep, 2020, 10(1): 15391. DOI: 10.1038/s41598-020-72310-1.
[10]
Silverman ME, Loudon H, Safier M, et al. Neural dysfunction in postpartum depression: an fMRI pilot study[J]. CNS Spectr, 2007, 12(11): 853-862. DOI: 10.1017/s1092852900015595.
[11]
Silverman ME, Loudon H, Liu X, et al. The neural processing of negative emotion postpartum: a preliminary study of amygdala function in postpartum depression[J]. Arch Womens Ment Health, 2011, 14(4): 355-359. DOI: 10.1007/s00737-011-0226-2.
[12]
Moses-Kolko EL, Perlman SB, Wisner KL, et al. Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression[J]. Am J Psychiatry, 2010, 167(11): 1373-1380. DOI: 10.1176/appi.ajp.2010.09081235.
[13]
Wonch KE, de Medeiros CB, Barrett JA, et al. Postpartum depression and brain response to infants: Differential amygdala response and connectivity[J]. Soc Neurosci, 2016, 11(6): 600-617. DOI: 10.1080/17470919.2015.1131193.
[14]
Dudin A, Wonch KE, Davis AD, et al. Amygdala and affective responses to infant pictures: Comparing depressed and non-depressed mothers and non-mothers[J]. J Neuroendocrinol, 2019, 31(9): e12790. DOI: 10.1111/jne.12790.
[15]
Barrett J, Wonch KE, Gonzalez A, et al. Maternal affect and quality of parenting experiences are related to amygdala response to infant faces[J]. Soc Neurosci, 2012, 7(3): 252-268. DOI: 10.1080/17470919.2011.609907.
[16]
Victor TA, Drevets WC, Misaki M, et al. Sex differences in neural responses to subliminal sad and happy faces in healthy individuals: Implications for depression[J]. J Neurosci Res, 2017, 95(1-2): 703-710. DOI: 10.1002/jnr.23870.
[17]
Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression[J]. Brain Struct Funct, 2008, 213(1-2): 93-118. DOI: 10.1007/s00429-008-0189-x.
[18]
Stuhrmann A, Dohm K, Kugel H, et al. Mood-congruent amygdala responses to subliminally presented facial expressions in major depression: associations with anhedonia[J]. J Psychiatry Neurosci, 2013, 38(4): 249-258. DOI: 10.1503/jpn.120060.
[19]
Laurent HK, Ablow JC. A cry in the dark: depressed mothers show reduced neural activation to their own infant's cry[J]. Soc Cogn Affect Neurosci, 2012, 7(2): 125-134. DOI: 10.1093/scan/nsq091.
[20]
Laurent HK, Ablow JC. A face a mother could love: depression-related maternal neural responses to infant emotion faces[J]. Soc Neurosci, 2013, 8(3): 228-239. DOI: 10.1080/17470919.2012.762039.
[21]
Moses-Kolko EL, Fraser D, Wisner KL, et al. Rapid habituation of ventral striatal response to reward receipt in postpartum depression[J]. Biol Psychiatry, 2011, 70(4): 395-399. DOI: 10.1016/j.biopsych.2011.02.021.
[22]
Morgan JK, Guo C, Moses-Kolko EL, et al. Postpartum depressive symptoms moderate the link between mothers' neural response to positive faces in reward and social regions and observed caregiving[J]. Soc Cogn Affect Neurosci, 2017, 12(10): 1605-1613. DOI: 10.1093/scan/nsx087.
[23]
Filimon F, Nelson JD, Sejnowski TJ, et al. The ventral striatum dissociates information expectation, reward anticipation, and reward receipt[J]. Proc Natl Acad Sci U S A, 2020, 117(26): 15200-15208. DOI: 10.1073/pnas.1911778117.
[24]
Putnam KT, Wilcox M, Robertson-Blackmore E, et al. Clinical phenotypes of perinatal depression and time of symptom onset: analysis of data from an international consortium[J]. Lancet Psychiatry, 2017, 4(6): 477-485. DOI: 10.1016/S2215-0366(17)30136-0.
[25]
Wang XJ, Wang J, Liu ZH. Abnormal pleasure levels and neural processing in response to positive and negative music in postpartum depression: a preliminary functional magnetic resonance imaging study[J]. Chin J Psychiatry, 2014, 47(4): 200-204. DOI: 10.3760/cma.j.issn.1006-7884.2014.04.003.
[26]
Dong T, Zhu GP, Wang XM, et al. A mplitude of low frequency fluctuation in postpartum depression: a resting-state functional magneic resonance imaging study[J]. Chin J Psychiatry. 2018, 51(6): 359-362. DOI: 10.3760/cma.j.issn.1006-7884.2018.06.004.
[27]
Che KL, Mao N, Li Y, et al. Altered spontaneous neural activity in peripartum depression: a resting-state functional magnetic resonance imaging study[J]. Front Psychol, 2020, 11: 656. DOI: 10.3389/fpsyg.2020.00656.
[28]
Che KL, Mao N, Xie HZ et al. Altered spontaneous neural activity in postpartum depression: a resting state functional magnetic resonance imaging study[J]. Chin J Psychiatry, 2020, 50(3): 243-248. DOI: 10.3760/cma.j.cn113661-2019.07.23.00241.
[29]
Deligiannidis KM, Sikoglu EM, Shaffer SA, et al. GABAergic neuroactive steroids and resting-state functional connectivity in postpartum depression: a preliminary study[J]. J Psychiatr Res, 2013, 47(6): 816-828. DOI: 10.1016/j.jpsychires.2013.02.010.
[30]
Guo DB, Chen XN, Cao JH, et al. Functional connectivity of affective network in patients with postpartum depression: a resting-state fMRI study[J]. Chin J Nerv Ment Dis, 2019, 45(10): 588-594. DOI: 10.3969/j.issn.1002-0152.2019.10.003.
[31]
Chase HW, Moses-Kolko EL, Zevallos C, et al. Disrupted posterior cingulate-amygdala connectivity in postpartum depressed women as measured with resting BOLD fMRI[J]. Soc Cogn Affect Neurosci, 2014, 9(8): 1069-1075. DOI: 10.1093/scan/nst083.
[32]
Zhang SF, Wang W, Wang G, et al. Aberrant resting-state interhemispheric functional connectivity in patients with postpartum depression[J]. Behav Brain Res, 2020, 382: 112483. DOI: 10.1016/j.bbr.2020.112483.
[33]
Mao N, Che K, Xie H, et al. Abnormal information flow in postpartum depression: a resting-state functional magnetic resonance imaging study[J]. J Affect Disord, 2020, 277: 596-602. DOI: 10.1016/j.jad.2020.08.060.
[34]
Moses-Kolko EL, Wisner KL, Price JC, et al. Serotonin 1A receptor reductions in postpartum depression: a positron emission tomography study[J]. Fertil Steril, 2008, 89(3): 685-692. DOI: 10.1016/j.fertnstert.2007.03.059.
[35]
Sacher J, Rekkas PV, Wilson AA, et al. Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying[J]. Neuropsychopharmacology, 2015, 40(2): 429-435. DOI: 10.1038/npp.2014.190.
[36]
Moses-Kolko EL, Price JC, Wisner KL, et al. Postpartum and depression status are associated with lower [(1)(1)C] raclopride BP(ND) in reproductive-age women[J]. Neuropsychopharmacology, 2012, 37(6): 1422-1432. DOI: 10.1038/npp.2011.328.
[37]
Bixo M, Johansson M, Timby E, et al. Effects of GABA active steroids in the female brain with a focus on the premenstrual dysphoric disorder[J]. J Neuroendocrinol, 2018, 30(2): 12553. DOI: 10.1111/jne.12553.
[38]
Duan C, Cosgrove J, Deligiannidis KM. Understanding peripartum depression through neuroimaging: a review of structural and functional connectivity and molecular imaging research[J]. Curr Psychiatry Rep, 2017, 19(10): 70. DOI: 10.1007/s11920-017-0824-4.
[39]
Lonstein JS, Maguire J, Meinlschmidt G, et al. Emotion and mood adaptations in the peripartum female:complementary contributions of GABA and oxytocin[J]. J Neuroendocrinol, 2014, 26(10): 649-664. DOI: 10.1111/jne.12188.
[40]
Rosa CE, Soares JC, Figueiredo FP, et al. Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy[J]. Psychiatry Res Neuroimaging, 2017, 265: 18-25. DOI: 10.1016/j.pscychresns.2017.04.008.
[41]
McEwen AM, Burgess DT, Hanstock CC, et al. Increased glutamate levels in the medial prefrontal cortex in patients with postpartum depression[J]. Neuropsychopharmacology, 2012, 37(11): 2428-2435. DOI: 10.1038/npp.2012.101.
[42]
Moriguchi S, Takamiya A, Noda Y, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies[J]. Mol Psychiatry, 2019, 24(7): 952-964. DOI: 10.1038/s41380-018-0252-9.
[43]
Godfrey KEM, Gardner AC, Kwon S, et al. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis[J]. J Psychiatr Res, 2018, 105: 33-44. DOI: 10.1016/j.jpsychires.2018.08.015.
[44]
Finocchi C, Ferrari M. Female reproductive steroids and neuronal excitability[J]. Neurol Sci, 2011, 32(Suppl 1): S31-35. DOI: 10.1007/s10072-011-0532-5.
[45]
de Rezende MG, Rosa CE, Garcia-Leal C, et al. Correlations between changes in the hypothalamic-pituitary-adrenal axis and neurochemistry of the anterior cingulate gyrus in postpartum depression[J]. J Affect Disord, 2018, 239: 274-281. DOI: 10.1016/j.jad.2018.07.028.
[46]
Huang XY, Gu XL, Shen XY. IH-MRS study 00 hippampus in the patients with post partum deprssion[J]. J Med Imaging:2019, 29(2): 184-186. DOI: CNKI:SUN:XYXZ.0.2019-02-006.

PREV Research progress of brain magnetic resonance imaging in patients with obstructive sleep apnea hypopnea syndrome
NEXT Advances in neuroimaging studies of childhood autism
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn