Share:
Share this content in WeChat
X
Experience Exchang
Comparative study of 3D-FLAIR sequence based on compressed sensing and the conventional 2D-FLAIR sequence in white matter lesion imaging
ZHANG Yueqing  DING Jinli  GONG Tao  CHEN Xuzhu  ZHENG Fenglian  ZHANG Yanbo  FAN Yilong  LIN Liangjie 

Cite this article as: Zhang YQ, Ding JL, Gong T, et al. Comparative study of 3D-FLAIR sequence based on compressed sensing and the conventional 2D-FLAIR sequence in white matter lesion imaging[J]. Chin J Magn Reson Imaging, 2022, 13(4): 100-102, 119. DOI:10.12015/issn.1674-8034.2022.04.018.


[Abstract] Objective To compare the imaging quality of 3D-FLAIR sequence based on compressed sensing (CS) with the conventional 2D-FLAIR sequence in detection of brain white matter lesions.Materials and Methods Forty patients with white matter lesions who underwent both CS 3D-FLAIR and 2D-FLAIR were analyzed. The signal-to-noise ratio (SNR) and contrast noise ratio (CNR) of the images were calculated. The overall image quality and number of the white matter lesions were evaluated by two experienced radiologists. Statistical analysis was performed by Wilcoxon assay.Results The acquisition time of 3D-FLAIR sequence by using CS technique could be shorted to be equal to that of 2D-FLAIR sequence. No significant differences were observed for the SNR and CNR between the CS 3D-FLAIR and 2D-FLAIR sequences (Z=-1.18, P=0.24; Z=-1.92, P=0.14). The overall image quality for CS 3D-FLAIR sequence were better than the 2D-FLAIR sequence (Z=-3.99, P<0.001), and more white matter lesions were detected from the CS 3D-FLAIR sequence than those from the 2D-FLAIR sequence (Z=-3.75, P=0.006). The pulsatile artifactsin the fourth-ventricle layer on the 2D-FLAIR images were suppressed on the CS 3D-FLAIR images.Conclusions In the case of the same acquisition time, the advantages of the CS 3D-FLAIR, including better overall image quality and suppressed pulsation artifacts, make it more attractive in the detection of white matter lesions than the 2D-FLAIR, which is recommended for clinical application.
[Keywords] magnetic resonance imaging;fluid-attenuated inversion recovery;compressed sensing;white matter lesions

ZHANG Yueqing1   DING Jinli1*   GONG Tao2   CHEN Xuzhu1   ZHENG Fenglian1   ZHANG Yanbo1   FAN Yilong1   LIN Liangjie3  

1 Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

2 Department of Radiology, Yichun People's Hospital, Yichun 336099, China

3 Philips (China) Investment Co., LTD, Beijing 100102, China

Ding JL, E-mail: dingjinli@bjtth.org

Conflicts of interest   None.

Received  2021-11-30
Accepted  2022-04-01
DOI: 10.12015/issn.1674-8034.2022.04.018
Cite this article as: Zhang YQ, Ding JL, Gong T, et al. Comparative study of 3D-FLAIR sequence based on compressed sensing and the conventional 2D-FLAIR sequence in white matter lesion imaging[J]. Chin J Magn Reson Imaging, 2022, 13(4): 100-102, 119. DOI:10.12015/issn.1674-8034.2022.04.018.

[1]
Saranathan M, Worters PW, Rettmann DW, et al. Physics for clinicians: fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging[J]. J Magn Reson Imaging, 2017, 46(6): 1590-1600. DOI: 10.1002/jmri.25737.
[2]
Li ZQ, Pipe JG, Ooi MB, et al. Improving the image quality of 3D FLAIR with a spiral MRI technique[J]. Magn Reson Med, 2020, 83(1): 170-177. DOI: 10.1002/mrm.27911.
[3]
Lecler A, Bouzad C, Deschamps R, et al. Optimizing 3D FLAIR to detect MS lesions: pushing past factory settings for precise results[J]. J Neurol, 2019, 266(11): 2786-2795. DOI: 10.1007/s00415-019-09490-y.
[4]
Toledano-Massiah S, Sayadi A, de Boer R, et al. Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T[J]. AJNR Am J Neuroradiol, 2018, 39(3): 454-458. DOI: 10.3174/ajnr.A5517.
[5]
Mönch S, Sollmann N, Hock A, et al. Magnetic resonance imaging of the brain using compressed sensing - quality assessment in daily clinical routine[J]. Clin Neuroradiol, 2020, 30(2): 279-286. DOI: 10.1007/s00062-019-00789-x.
[6]
Kakeda S, Korogi Y, Hiai Y, et al. Pitfalls of 3D FLAIR brain imaging: a prospective comparison with 2D FLAIR[J]. Acad Radiol, 2012, 19(10): 1225-1232. DOI: 10.1016/j.acra.2012.04.017.
[7]
Tan IL, Pouwels PJW, van Schijndel RA, et al. Isotropic 3D fast FLAIR imaging of the brain in multiple sclerosis patients: initial experience[J]. Eur Radiol, 2002, 12(3): 559-567. DOI: 10.1007/s00330-001-1170-8.
[8]
Lecler A, Sanharawi IE, Methni JE, et al. Improving detection of multiple sclerosis lesions in the posterior Fossa using an optimized 3D-FLAIR sequence at 3T[J]. AJNR Am J Neuroradiol, 2019, 40(7): 1170-1176. DOI: 10.3174/ajnr.A6107.
[9]
Gabr RE, Pednekar AS, Govindarajan KA, et al. Patient-specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis[J]. J Magn Reson Imaging, 2017, 46(2): 557-564. DOI: 10.1002/jmri.25557.
[10]
Chen WW, Wang L, Zhu WZ, et al. Multicontrast single-slab 3D MRI to detect cerebral metastasis[J]. AJR Am J Roentgenol, 2012, 198(1): 27-32. DOI: 10.2214/AJR.11.7030.
[11]
Patzig M, Burke M, Brückmann H, et al. Comparison of 3D cube FLAIR with 2D FLAIR for multiple sclerosis imaging at 3 Tesla[J]. Rofo, 2014, 186(5): 484-488. DOI: 10.1055/s-0033-1355896.
[12]
Vranic JE, Cross NM, Wang Y, et al. Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality[J]. AJNR Am J Neuroradiol, 2019, 40(1): 92-98. DOI: 10.3174/ajnr.A5905.
[13]
Kallmes DF, Hui FK, Mugler JP II. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience[J]. Radiology, 2001, 221(1): 251-255. DOI: 10.1148/radiol.2211001712.
[14]
Homos MD. Can white matter lesion burden predict involvement of normal appearing thalami in multiple sclerosis? Study using 3D FLAIR and DTI[J]. Egypt J Radiol Nucl Med, 2021, 52: 24. DOI: 10.1186/s43055-021-00406-3.
[15]
Naganawa S. The technical and clinical features of 3D-FLAIR in neuroimaging[J]. Magn Reson Med Sci, 2015, 14(2): 93-106. DOI: 10.2463/mrms.2014-0132.
[16]
Bink A, Schmitt M, Gaa J, et al. Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T: initial results[J]. Eur Radiol, 2006, 16(5): 1104-1110. DOI: 10.1007/s00330-005-0107-z.
[17]
Moraal B, Roosendaal SD, Pouwels PJW, et al. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis[J]. Eur Radiol, 2008, 18(10): 2311-2320. DOI: 10.1007/s00330-008-1009-7.
[18]
Jeevanandham B, Kalyanpur T, Gupta P, et al. Comparison of post-contrast 3D-T 1-MPRAGE, 3D-T 1-SPACE and 3D-T 2-FLAIR MR images in evaluation of meningeal abnormalities at 3-T MRI[J]. Br J Radiol, 2017, 90(1074): 20160834. DOI: 10.1259/bjr.20160834.
[19]
Lammers MJW, Young E, Fenton D, et al. The prognostic value and pathophysiologic significance of three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging in idiopathic sudden sensorineural hearing loss: a systematic review and meta-analysis[J]. Clin Otolaryngol, 2019, 44(6): 1017-1025. DOI: 10.1111/coa.13432.
[20]
Amirmoezzi Y, Salehi S, Parsaei H, et al. A knowledge-based system for brain tumor segmentation using only 3D FLAIR images[J]. Australas Phys Eng Sci Med, 2019, 42(2): 529-540. DOI: 10.1007/s13246-019-00754-5.
[21]
Yu SL, Liu Y. Application of contrast-enhanced FLAIR in central nervous system diseases[J]. Int J Med Radiol, 2020, 43(5): 534-538. DOI: 10.19300/j.2020.Z17984.
[22]
Geng W, Jiang L, Chen HY, et al. To explore application value of FVHs in predicting the outcome of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2018, 9(12): 893-897. DOI: 10.12015/issn.1674-8034.2018.12.003.
[23]
Yu LS, Ma XJ. Application of CUBE T2 FLAIR sequences in diagnosing intracranial micrometastases[J]. Chin Imaging J Integr Tradit West Med, 2015, 13(5): 491-493. DOI: 10.3969/j.issn.1672-0512.2015.05.007.
[24]
Ma YL, Chen HY, Wang JF, et al. Correlation of white matter microstructural changes with executive function impairment in patients with white matter lesions[J]. Chin J Behav Med & Brain Sci, 2020, 29(3): 239-244. DOI: 10.3760/cma.j.cn371468-20190924-00678.
[25]
Li XL, Liu XH, Cao DN, et al. MRI research progress of white matter lesions and related vascular cognitive impairment[J]. Chin J Magn Reson Imaging, 2021, 12(7): 98-101. DOI: 10.12015/issn.1674-8034.2021.07.023.
[26]
Huang KS, Ao ZJ, Fang GQ, et al. MRI FLAIR sequence image analysis and cognitive function evaluation of vascular cognitive dysfunction[J]. J Hainan Med Univ, 2021, 32(7): 827-830. DOI: 10.3969/j.issn.1003-6350.2021.07.003.
[27]
Ye N, Wei W, Wang JF, et al. Quantitative analysis on correlation between cognitive impairment and cerebral white matter hyperintensityon FLAIR sequence[J]. Chin J Stroke, 2018, 13(8): 809-813. DOI: 10.3969/j.issn.1673-5765.2018.08.010.
[28]
Beqiri A, Hoogduin H, Sbrizzi A, et al. Whole-brain 3D FLAIR at 7T using direct signal control[J]. Magn Reson Med, 2018, 80(4): 1533-1545. DOI: 10.1002/mrm.27149.
[29]
Regnery S, Knowles BR, Paech D, et al. High-resolution FLAIR MRI at 7 Tesla for treatment planning in glioblastoma patients[J]. Radiother Oncol, 2019, 130: 180-184. DOI: 10.1016/j.radonc.2018.08.002.

PREV Effect of signal intensity inhomogeneity correction on quantitative susceptibility mapping of brain
NEXT Application value of gray level co-occurrence matrix in differentiating vestibular schwannoma from cerebellopontine angle meningioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn