Share:
Share this content in WeChat
X
Original Article
3.0 T multifrequency magnetic resonance elastography of the kidney: Regional variation and physiological effects on renal stiffness
LIANG Qiumei  QI Ruirui  LUO Peiyin  MENG Fanqi  PAN Zhongxian  CHEN Qiuyi  LI Junfeng  PAN Jingtong  CHEN Yueyao 

Cite this article as: LIANG Q M, QI R R, LUO P Y, et al. 3.0 T multifrequency magnetic resonance elastography of the kidney: Regional variation and physiological effects on renal stiffness[J]. Chin J Magn Reson Imaging, 2024, 15(3): 137-142. DOI:10.12015/issn.1674-8034.2024.03.022.


[Abstract] Objective Multifrequency magnetic resonance elastography was used to investigate the relationships of different anatomical regions of the kidney (left and right kidneys, whole kidney, outer cortex, inner cortex, and medulla) and various physiological factors (age, sex, body mass index, and water intake) on renal stiffness.Materials and Methods Ninety-two healthy volunteers were recruited from Shenzhen Traditional Chinese Medicine Hospital during the period from March 2023 to December 2023. Multifrequency elastography was employed using a 3.0 T MR to assess the stiffness of renal different anatomical regions, including the whole kidney, outer cortex, inner cortex, and medulla. The aim was to conduct a bilateral comparison of differences between these regions, perform an analysis on the correlation among age, body mass index and kidney stiffness, as well as investigate gender and age disparities in kidney stiffness. Finally, the changes in kidney stiffness before and after drinking water were compared in 18 of the volunteers.Results There was no difference in the stiffness of the whole kidney, outer cortex, inner cortex and medulla bilaterally (P≥0.05). However, the stiffness of different anatomical regions of the kidney exhibited statistically significant differences, with the inner cortex demonstrating the highest stiffness [(3.01±0.22) m/s], followed by the outer cortex [(2.69±0.20) m/s] and the entire kidney [(2.55±0.17) m/s], while the medulla displayed a slightly lower stiffness [(2.16±0.15) m/s]. The stiffness of the whole kidney (r=-0.301, P=0.004) and the inner cortex (r=-0.330, P=0.001) exhibited a slightly decrease with age, as well as differed among the three age groups (P<0.05). The stiffness of different anatomical regions within the kidney was higher in males than in females (P<0.05). The stiffness of different anatomical regions of kidney was higher after drinking water than before in males and females (P<0.05), with particularly notable increases observed in both the outer cortex and inner cortex.Conclusions The stiffness of the kidney exhibits regional variations and it is related to age, gender and water intake.
[Keywords] kidney;magnetic resonance imaging;multifrequency elastography;stiffness;shear wave speed;anatomical region

LIANG Qiumei   QI Ruirui   LUO Peiyin   MENG Fanqi   PAN Zhongxian   CHEN Qiuyi   LI Junfeng   PAN Jingtong   CHEN Yueyao*  

Department of Radiology, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China

Corresponding author: CHEN Y Y, E-mail: drchenyueyao@163.com

Conflicts of interest   None.

Received  2023-10-18
Accepted  2024-02-05
DOI: 10.12015/issn.1674-8034.2024.03.022
Cite this article as: LIANG Q M, QI R R, LUO P Y, et al. 3.0 T multifrequency magnetic resonance elastography of the kidney: Regional variation and physiological effects on renal stiffness[J]. Chin J Magn Reson Imaging, 2024, 15(3): 137-142. DOI:10.12015/issn.1674-8034.2024.03.022.

[1]
JHA V, GARCIA-GARCIA G, ISEKI K, et al. Chronic kidney disease: global dimension and perspectives[J]. Lancet, 2013, 382(9888): 260-272. DOI: 10.1016/S0140-6736(13)60687-X.
[2]
WANG L M, XU X, ZHANG M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance[J]. JAMA Intern Med, 2023, 183(4): 298-310. DOI: 10.1001/jamainternmed.2022.6817.
[3]
MATSUSHITA K, BALLEW S H, WANG A Y M, et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease[J]. Nat Rev Nephrol, 2022, 18(11): 696-707. DOI: 10.1038/s41581-022-00616-6.
[4]
LIYANAGE T, TOYAMA T, HOCKHAM C, et al. Prevalence of chronic kidney disease in Asia: a systematic review and analysis[J/OL]. BMJ Glob Health, 2022, 7(1): e007525 [2023-10-05]. https://pubmed.ncbi.nlm.nih.gov/35078812/. DOI: 10.1136/bmjgh-2021-007525.
[5]
SUNDSTRÖM J, BODEGARD J, BOLLMANN A, et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: the CaReMe CKD study[J/OL]. Lancet Reg Health Eur, 2022, 20: 100438 [2023-10-05]. https://pubmed.ncbi.nlm.nih.gov/36090671/. DOI: 10.1016/j.lanepe.2022.100438.
[6]
WARK D M. Hypnosis and end-stage renal disease: review and treatment[J]. Am J Clin Hypn, 2020, 63(1): 36-48. DOI: 10.1080/00029157.2020.1748561.
[7]
LEVEY A S, ECKARDT K U, TSUKAMOTO Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: improving Global Outcomes (KDIGO)[J]. Kidney Int, 2005, 67(6): 2089-2100. DOI: 10.1111/j.1523-1755.2005.00365.x.
[8]
INKER L A, ENEANYA N D, CORESH J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race[J]. N Engl J Med, 2021, 385(19): 1737-1749. DOI: 10.1056/NEJMoa2102953.
[9]
INKER L A, SCHMID C H, TIGHIOUART H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C[J]. N Engl J Med, 2012, 367(1): 20-29. DOI: 10.1056/NEJMoa1114248.
[10]
JANČIČ S G, MOČNIK M, VARDA N M. Glomerular filtration rate assessment in children[J/OL]. Children, 2022, 9(12): 1995 [2023-10-06]. https://pubmed.ncbi.nlm.nih.gov/36553437/. DOI: 10.3390/children9121995.
[11]
DELGADO C, BAWEJA M, CREWS D C, et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease[J]. Am J Kidney Dis, 2022, 79(2): 268-288. DOI: 10.1053/j.ajkd.2021.08.003.
[12]
BERNARDINO J I. Estimated glomerular filtration rate equations: one size does not fit all[J]. AIDS, 2023, 37(5): 845-847. DOI: 10.1097/QAD.0000000000003502.
[13]
DJUDJAJ S, BOOR P. Cellular and molecular mechanisms of kidney fibrosis[J]. Mol Aspects Med, 2019, 65: 16-36. DOI: 10.1016/j.mam.2018.06.002.
[14]
HUANG R S, FU P, MA L. Kidney fibrosis: from mechanisms to therapeutic medicines[J/OL]. Signal Transduct Target Ther, 2023, 8(1): 129 [2023-10-06]. https://pubmed.ncbi.nlm.nih.gov/29909119/. DOI: 10.1038/s41392-023-01379-7.
[15]
ZHANG J, YU Y M, LIU X S, et al. Evaluation of renal fibrosis by mapping histology and magnetic resonance imaging[J]. Kidney Dis, 2021, 7(2): 131-142. DOI: 10.1159/000513332.
[16]
BROWN R S, SUN M R M, STILLMAN I E, et al. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy[J]. Nephrol Dial Transplant, 2020, 35(6): 970-978. DOI: 10.1093/ndt/gfz066.
[17]
GÜVEN A T, IDILMAN I S, CEBRAYILOV C, et al. Evaluation of renal fibrosis in various causes of glomerulonephritis by MR elastography: a clinicopathologic comparative analysis[J]. Abdom Radiol, 2022, 47(1): 288-296. DOI: 10.1007/s00261-021-03296-1.
[18]
LANG S T, GUO J, BRUNS A, et al. Multiparametric quantitative MRI for the detection of IgA nephropathy using tomoelastography, DWI, and BOLD imaging[J]. Invest Radiol, 2019, 54(10): 669-674. DOI: 10.1097/RLI.0000000000000585.
[19]
MARTICORENA GARCIA S R, GROSSMANN M, BRUNS A, et al. Tomoelastography paired with T2* magnetic resonance imaging detects lupus nephritis with normal renal function[J]. Invest Radiol, 2019, 54(2): 89-97. DOI: 10.1097/RLI.0000000000000511.
[20]
KREHL K, HAHNDORF J, STOLZENBURG N, et al. Characterization of renal fibrosis in rats with chronic kidney disease by in vivo tomoelastography[J/OL]. NMR Biomed, 2023, 36(11): e5003 [2023-12-06]. https://pubmed.ncbi.nlm.nih.gov/37455558/. DOI: 10.1002/nbm.5003.
[21]
ELSINGERGY M M, VITERI B, OTERO H J, et al. Imaging fibrosis in pediatric kidney transplantation: a pilot study[J/OL]. Pediatr Transplant, 2023, 27(5): e14540 [2023-12-06]. https://pubmed.ncbi.nlm.nih.gov/37166372. DOI: 10.1111/petr.14540.
[22]
DILLMAN J R, BENOIT S W, GANDHI D B, et al. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease[J]. Abdom Radiol (NY), 2022, 47(5): 1840-1852. DOI: 10.1007/s00261-022-03456-x.
[23]
DITTMANN F, TZSCHÄTZSCH H, HIRSCH S, et al. Tomoelastography of the abdomen: tissue mechanical properties of the liver, spleen, kidney, and pancreas from single MR elastography scans at different hydration states[J]. Magn Reson Med, 2017, 78(3): 976-983. DOI: 10.1002/mrm.26484.
[24]
STREITBERGER K J, GUO J, TZSCHÄTZSCH H, et al. High-resolution mechanical imaging of the kidney[J]. J Biomech, 2014, 47(3): 639-644. DOI: 10.1016/j.jbiomech.2013.11.051.
[25]
TZSCHÄTZSCH H, GUO J, DITTMANN F, et al. Tomoelastography by multifrequency wave number recovery from time-harmonic propagating shear waves[J/OL]. Med Image Anal, 2016, 30: 1-10 [2023-10-06]. https://pubmed.ncbi.nlm.nih.gov/26845371/. DOI: 10.1016/j.media.2016.01.001.
[26]
SONG Q K, SHI Y, GAO F, et al. Feasibility and reproducibility of multifrequency magnetic resonance elastography in healthy and diseased pancreases[J]. J Magn Reson Imaging, 2022, 56(6): 1769-1780. DOI: 10.1002/jmri.28158.
[27]
ELSHOLTZ F H J, REITER R, MARTICORENA GARCIA S R, et al. Multifrequency magnetic resonance elastography-based tomoelastography of the parotid glands-feasibility and reference values[J/OL]. Dentomaxillofac Radiol, 2022, 51(1): 20210337 [2023-10-06]. https://pubmed.ncbi.nlm.nih.gov/34558305. DOI: 10.1259/dmfr.20210337.
[28]
HERTHUM H, HETZER S, KREFT B, et al. Cerebral tomoelastography based on multifrequency MR elastography in two and three dimensions[J/OL]. Front Bioeng Biotechnol, 2022, 10: 1056131 [2023-11-10]. https://pubmed.ncbi.nlm.nih.gov/36532573/. DOI: 10.3389/fbioe.2022.1056131.
[29]
SIGMUND E E, MIKHEEV A, BRINKMANN I M, et al. Cardiac phase and flow compensation effects on REnal flow and microstructure AnisotroPy MRI in healthy human kidney[J]. J Magn Reson Imaging, 2023, 58(1): 210-220. DOI: 10.1002/jmri.28517.
[30]
EDWARDS A, KURTCUOGLU V. Renal blood flow and oxygenation[J]. Pflugers Arch, 2022, 474(8): 759-770. DOI: 10.1007/s00424-022-02690-y.
[31]
CHEN J, ZHANG Z, LIU J, et al. Multiparametric magnetic resonance imaging of the kidneys: effects of regional, side, and hydration variations on functional quantifications[J]. J Magn Reson Imaging, 2023, 57(5): 1576-1586. DOI: 10.1002/jmri.28477.
[32]
GANDHI D, KALRA P, RATERMAN B, et al. Magnetic resonance elastography-derived stiffness of the kidneys and its correlation with water perfusion[J/OL]. NMR Biomed, 2020, 33(4): e4237 [2023-11-10]. https://pubmed.ncbi.nlm.nih.gov/31889353. DOI: 10.1002/nbm.4237.
[33]
MARTICORENA GARCIA S R, GROSSMANN M, LANG S T, et al. Tomoelastography of the native kidney: regional variation and physiological effects on in vivo renal stiffness[J]. Magn Reson Med, 2018, 79(4): 2126-2134. DOI: 10.1002/mrm.26892.
[34]
MEYER T, MARTICORENA GARCIA S, TZSCHÄTZSCH H, et al. Comparison of inversion methods in MR elastography: an open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brain[J]. Magn Reson Med, 2022, 88(4): 1840-1850. DOI: 10.1002/mrm.29320.
[35]
PAGÉ G, JULEA F, PARADIS V, et al. Comparative analysis of a locally resampling MR elastography reconstruction algorithm in liver fibrosis[J]. J Magn Reson Imaging, 2023, 58(2): 403-414. DOI: 10.1002/jmri.28543.
[36]
GANDHI D, KALRA P, RATERMAN B, et al. Magnetic Resonance Elastography of kidneys: SE-EPI MRE reproducibility and its comparison to GRE MRE[J/OL]. NMR Biomed, 2019, 32(11): e4141 [2023-11-10]. https://pubmed.ncbi.nlm.nih.gov/31329347/. DOI: 10.1002/nbm.4141.
[37]
LOW G, OWEN N E, JOUBERT I, et al. Reliability of magnetic resonance elastography using multislice two-dimensional spin-echo echo-planar imaging (SE-EPI) and three-dimensional inversion reconstruction for assessing renal stiffness[J]. J Magn Reson Imaging, 2015, 42(3): 844-850. DOI: 10.1002/jmri.24826.
[38]
ROUVIÈRE O, SOUCHON R, PAGNOUX G, et al. Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults[J]. J Magn Reson Imaging, 2011, 34(4): 880-886. DOI: 10.1002/jmri.22670.
[39]
WHITE K E. Research into the structure of the kidney glomerulus: making it count[J]. Micron, 2012, 43(10): 1001-1009. DOI: 10.1016/j.micron.2012.04.013.
[40]
LÓPEZ J I, LARRINAGA G, KURODA N, et al. The normal and pathologic renal medulla: a comprehensive overview[J]. Pathol Res Pract, 2015, 211(4): 271-280. DOI: 10.1016/j.prp.2014.12.009.
[41]
DENIC A, RICAURTE L, LOPEZ C L, et al. Glomerular volume and glomerulosclerosis at different depths within the human kidney[J]. J Am Soc Nephrol, 2019, 30(8): 1471-1480. DOI: 10.1681/ASN.2019020183.
[42]
KANZAKI G, TSUBOI N, UTSUNOMIYA Y, et al. Distribution of glomerular density in different cortical zones of the human kidney[J]. Pathol Int, 2013, 63(3): 169-175. DOI: 10.1111/pin.12044.
[43]
SAMUEL T, HOY W E, DOUGLAS-DENTON R, et al. Determinants of glomerular volume in different cortical zones of the human kidney[J]. J Am Soc Nephrol, 2005, 16(10): 3102-3109. DOI: 10.1681/ASN.2005010123.
[44]
SASAKI T, TSUBOI N, KANZAKI G, et al. Biopsy-based estimation of total nephron number in Japanese living kidney donors[J]. Clin Exp Nephrol, 2019, 23(5): 629-637. DOI: 10.1007/s10157-018-01686-2.
[45]
BAIREY MERZ C N, DEMBER L M, INGELFINGER J R, et al. Sex and the kidneys: current understanding and research opportunities[J]. Nat Rev Nephrol, 2019, 15(12): 776-783. DOI: 10.1038/s41581-019-0208-6.
[46]
LAYTON A T, SULLIVAN J C. Recent advances in sex differences in kidney function[J/OL]. Am J Physiol Renal Physiol, 2019, 316(2): F328-F331 [2023-10-10]. https://pubmed.ncbi.nlm.nih.gov/30565997/. DOI: 10.1152/ajprenal.00584.2018.
[47]
CARRERO J J, HECKING M, CHESNAYE N C, et al. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease[J]. Nat Rev Nephrol, 2018, 14(3): 151-164. DOI: 10.1038/nrneph.2017.181.
[48]
LEE J, LEE R, ERPELDING T, et al. The effect of water intake on ultrasound tissue characteristics and hemodynamics of adult livers[J]. Clin Exp Hepatol, 2021, 7(2): 223-230. DOI: 10.5114/ceh.2021.107068.
[49]
LEONG S S, WONG J H D, SHAH M N MD, et al. Stiffness and anisotropy effect on shear wave elastography: a phantom and in vivo renal study[J]. Ultrasound Med Biol, 2020, 46(1): 34-45. DOI: 10.1016/j.ultrasmedbio.2019.08.011.

PREV Predicting lymph-vascular space invasion in cervical cancer based on MR-T2WI with deep learning and radiomic features combined with clinical features
NEXT Combing DCE-MRI and fatty acid metabolomics to evaluate the function of bone marrow endothelial progenitor cells in diabetic rabbits with critical limb ischemia
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn