Share:
Share this content in WeChat
X
Review
Advance of peritumoral radiomics research
HOU Juan  LIU Wenya 

Cite this article as: HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imaging, 2024, 15(3): 230-234. DOI:10.12015/issn.1674-8034.2024.03.038.


[Abstract] Peritumor refers to the junction zone between tumor and healthy tissue, which reveal unique physical and immune characteristics and play an important role in the whole process of tumor development. Radiomics contains a series of computer related technologies. It can extract large amounts of high-dimensional quantitative features from multi-modality medical images, then excavate the correlations between these features and the diagnosis/prognosis of disease. So as to provide quantitative and objective support for disease detection and treatment. On the basis of reading domestic and foreign documents, this paper summarized the segmentation of peritumoral tissue, the application of peritumoral radiomics in diagnosis and differential diagnosis, staging and pathological classification, tumor genetics, efficacy and prognosis prediction of tumor, and microvascular invasion of liver cancer, prospected its future development. The aim of this paper is to provide some reference for the research of tumor microenvironment and precision diagnosis and treatment.
[Keywords] tumor;peritumor;microvascular invasion;magnetic resonence imaging;radiomics;artificial intelligence;diagnose;prognosis

HOU Juan   LIU Wenya*  

Imaging Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China

Corresponding author: LIU W Y, E-mail: 13999202977@163.com

Conflicts of interest   None.

Received  2023-12-16
Accepted  2024-02-26
DOI: 10.12015/issn.1674-8034.2024.03.038
Cite this article as: HOU J, LIU W Y. Advance of peritumoral radiomics research[J]. Chin J Magn Reson Imaging, 2024, 15(3): 230-234. DOI:10.12015/issn.1674-8034.2024.03.038.

[1]
SILVA M, VIVANCOS C, DUFFAU H. The concept of «Peritumoral zone» in diffuse low-grade gliomas: oncological and functional implications for a connectome-guided therapeutic attitude[J/OL]. Brain Sci, 2022, 12(4): 504 [2023-10-25]. https://pubmed.ncbi.nlm.nih.gov/35448035/. DOI: 10.3390/brainsci12040504.
[2]
GU Y H, GUO Y Y, GAO N, et al. The proteomic characterization of the peritumor microenvironment in human hepatocellular carcinoma[J]. Oncogene, 2022, 41(17): 2480-2491. DOI: 10.1038/s41388-022-02264-3.
[3]
GADALETA E, THORN G J, ROSS-ADAMS H, et al. Field cancerization in breast cancer[J]. J Pathol, 2022, 257(4): 561-574. DOI: 10.1002/path.5902.
[4]
LEMÉE J M, CLAVREUL A, MENEI P. Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone[J]. Neuro Oncol, 2015, 17(10): 1322-1332. DOI: 10.1093/neuonc/nov119.
[5]
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
[6]
LIMKIN E J, SUN R, DERCLE L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology[J]. Ann Oncol, 2017, 28(6): 1191-1206. DOI: 10.1093/annonc/mdx034.
[7]
LAMBIN P, LEIJENAAR R T H, DEIST T M, et al. Radiomics: the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12): 749-762. DOI: 10.1038/nrclinonc.2017.141.
[8]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[9]
ALGOHARY A, SHIRADKAR R, PAHWA S, et al. Combination of peri-tumoral and intra-tumoral radiomic features on Bi-parametric MRI accurately stratifies prostate cancer risk: a multi-site study[J/OL]. Cancers, 2020, 12(8): 2200 [2023-10-25]. https://pubmed.ncbi.nlm.nih.gov/32781640/. DOI: 10.3390/cancers12082200.
[10]
HU Y H, XIE C Y, YANG H, et al. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma[J/OL]. JAMA Netw Open, 2020, 3(9): e2015927 [2023-10-25]. https://pubmed.ncbi.nlm.nih.gov/32910196/. DOI: 10.1001/jamanetworkopen.2020.15927.
[11]
DUAN Y Y, CHEN X B, LI W Y, et al. Multimodal radiomics and nomogram-based prediction of axillary lymph node metastasis in breast cancer: an analysis considering optimal peritumoral region[J]. J Clin Ultrasound, 2023, 51(7): 1231-1241. DOI: 10.1002/jcu.23520.
[12]
LI Z J, YANG X F, JIANG Z Y, et al. Intratumoral and peritumoral radiomics assessment of HER2 status in breast cancer based on DBT[J]. J Clin Radiol, 2023, 42(9): 1436-1441. DOI: 10.13437/j.cnki.jcr.2023.09.008.
[13]
LIN M M, LI K, HUANG H P, et al. Intratumoral and peritumoral radiomics combined with clinical and CT features for predicting peritumoral lymphovascular invasion of pulmonary invasive adenocarcinoma[J]. Chin J Med Imag Technol, 2023, 39(10): 1514-1519. DOI: 10.13929/j.issn.1003-3289.2023.10.015.
[14]
RIAHI SAMANI Z, PARKER D, AKBARI H, et al. Artificial intelligence-based locoregional markers of brain peritumoral microenvironment[J/OL]. Sci Rep, 2023, 13(1): 963 [2023-10-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849348/. DOI: 10.1038/s41598-022-26448-9.
[15]
CHEN H, BAN D, QI X S, et al. A hybrid feature selection-based approach for brain tumor detection and automatic segmentation on multiparametric magnetic resonance images[J]. Med Phys, 2021, 48(11): 6614-6626. DOI: 10.1002/mp.15026.
[16]
WU Q X, WANG S, ZHANG S X, et al. Development of a deep learning model to identify lymph node metastasis on magnetic resonance imaging in patients with cervical cancer[J/OL]. JAMA Netw Open, 2020, 3(7): e2011625 [2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/32706384/. DOI: 10.1001/jamanetworkopen.2020.11625.
[17]
ZHANG Y, LI W K, ZHANG Z, et al. Differential diagnosis of prostate cancer and benign prostatic hyperplasia based on DCE-MRI using bi-directional CLSTM deep learning and radiomics[J]. Med Biol Eng Comput, 2023, 61(3): 757-771. DOI: 10.1007/s11517-022-02759-x.
[18]
LI X L, MA Q L, NIE P, et al. A CT-based radiomics nomogram for differentiation of renal oncocytoma and chromophobe renal cell carcinoma with a central scar-matched study[J/OL]. Br J Radiol, 2022, 95(1129): 20210534 [2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/34735296/. DOI: 10.1259/bjr.20210534.
[19]
ZHOU Y, ZHOU G F, ZHANG J L, et al. DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular- cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2022, 32(7): 5004-5015. DOI: 10.1007/s00330-022-08548-2.
[20]
GAO Y K, WANG X W, WANG S H, et al. Differential diagnosis of type 1 and type 2 papillary renal cell carcinoma based on enhanced CT radiomics nomogram[J/OL]. Front Oncol, 2022, 12: 854979 [2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/35719928/. DOI: 10.3389/fonc.2022.854979.
[21]
LIU X M, ZHANG J, ZHOU J J, et al. Multi-modality radiomics nomogram based on DCE-MRI and ultrasound images for benign and malignant breast lesion classification[J/OL]. Front Oncol, 2022, 12: 992509 [2023-22-05]. https://pubmed.ncbi.nlm.nih.gov/36531052/. DOI: 10.3389/fonc.2022.992509.
[22]
CHEN X B, GUO X Y, YU Z X, et al. The diagnostic value of different combinations of intra-and peri-nodular radiomic features for lung adenocarcinoma[J]. Chin Comput Med Imag, 2021, 27(4): 289-295. DOI: 10.3969/j.issn.1006-5741.2021.04.004.
[23]
YUAN Y, LI Z K, DU H D, et al. Application value of MRI peritumoral radiomics features in differentiation between high-grade glioblastoma and single brain metastasis[J]. J Mod Oncol, 2023, 31(6): 1103-1107. DOI: 10.3969/j.issn.1672-4992.2023.06.023.
[24]
LIU Q F, DING Z M, YAO Q, et al. The clinical value of distinguishing parotid pleomorphic adenoma and adenolymphoma based on the intratumoral and peritumoral CT radiomics models[J]. J Mod Oncol, 2023, 31(18): 3461-3467. DOI: 10.3969/j.issn.1672-4992.2023.18.024.
[25]
ZHOU J J, ZHANG Y, CHANG K T, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
[26]
MA Y Q, XU X R, PANG P P, et al. A CT-based tumoral and mini-peritumoral radiomics approach: differentiate fat-poor angiomyolipoma from clear cell renal cell carcinoma[J]. Cancer Manag Res, 2021, 13: 1417-1425. DOI: 10.2147/CMAR.S297094.
[27]
LI N, LU J P, BIAN Y. Application progress of radiomics in renal cell carcinoma[J]. Chin J Med Imag, 2023, 31(7): 785-789. DOI: 10.3969/j.issn.1005-5185.2023.07.022.
[28]
CHEN H, LIANG M Z, LEI Y, et al. Prediction of pathological grading of lung adenocarcinoma by comparing peritumoral with intratumoral radiomics models[J]. Radiol Pract, 2020, 35(4): 478-483. DOI: 10.13609/j.cnki.1000-0313.2020.04.016.
[29]
MA Y Q, GUAN Z, LIANG H, et al. Predicting the WHO/ISUP grade of clear cell renal cell carcinoma through CT-based tumoral and peritumoral radiomics[J/OL]. Front Oncol, 2022, 12: 831112 [2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/35237524/. DOI: 10.3389/fonc.2022.831112.
[30]
YANG L, SUN J Y, YU X B, et al. Diagnosis of serosal invasion in gastric adenocarcinoma by dual-energy CT radiomics: focusing on localized gastric wall and peritumoral radiomics features[J/OL]. Front Oncol, 2022, 12: 848425 [2023-11-05]. https://pubmed.ncbi.nlm.nih.gov/35387116/. DOI: 10.3389/fonc.2022.848425.
[31]
JIN Y M, LI M, ZHAO Y L, et al. Computed tomography-based radiomics for preoperative prediction of tumor deposits in rectal cancer[J/OL]. Front Oncol, 2021, 11: 710248 [2023-10-25]. https://pubmed.ncbi.nlm.nih.gov/34646765/. DOI: 10.3389/fonc.2021.710248.
[32]
RODRÍGUEZ N, VIÑAL D, RODRÍGUEZ-COBOS J, et al. Genomic profiling in oncology clinical practice[J]. Clin Transl Oncol, 2020, 22(9): 1430-1439. DOI: 10.1007/s12094-020-02296-9.
[33]
BOEHM K M, KHOSRAVI P, VANGURI R, et al. Harnessing multimodal data integration to advance precision oncology[J]. Nat Rev Cancer, 2022, 22(2): 114-126. DOI: 10.1038/s41568-021-00408-3.
[34]
NIU S X, JIANG W Y, ZHAO N N, et al. Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI[J]. J Cancer Res Clin Oncol, 2022, 148(1): 97-106. DOI: 10.1007/s00432-021-03822-0.
[35]
WU Y M, MA Q Q, FAN L F, et al. An automated breast volume scanner-based intra- and peritumoral radiomics nomogram for the preoperative prediction of expression of ki-67 in breast malignancy[J]. Acad Radiol, 2024, 31(1): 93-103. DOI: 10.1016/j.acra.2023.07.004.
[36]
JIANG T, SONG J D, WANG X Y, et al. Intratumoral and peritumoral analysis of mammography, tomosynthesis, and multiparametric MRI for predicting ki-67 level in breast cancer: a radiomics-based study[J]. Mol Imaging Biol, 2022, 24(4): 550-559. DOI: 10.1007/s11307-021-01695-w.
[37]
YAMAZAKI M, YAGI T, TOMINAGA M, et al. Role of intratumoral and peritumoral CT radiomics for the prediction of EGFR gene mutation in primary lung cancer[J/OL]. Br J Radiol, 2022, 95(1140): 20220374 [2023-10-25]. https://pubmed.ncbi.nlm.nih.gov/36115683/. DOI: 10.1259/bjr.20220374.
[38]
SHANG Y L, CHEN W D, LI G, et al. Computed Tomography-derived intratumoral and peritumoral radiomics in predicting EGFR mutation in lung adenocarcinoma[J]. Radiol Med, 2023, 128(12): 1483-1496. DOI: 10.1007/s11547-023-01722-6.
[39]
HOU S P, FAN Y, WANG X Y, et al. Radiomics for detection of the EGFR mutation in liver metastatic NSCLC[J]. Acad Radiol, 2023, 30(6): 1039-1046. DOI: 10.1016/j.acra.2022.06.016.
[40]
SELIGER B, MASSA C. Modulation of lymphocyte functions in the microenvironment by tumor oncogenic pathways[J/OL]. Front Immunol, 2022, 13: 883639 [2023-12-30]. https://pubmed.ncbi.nlm.nih.gov/35663987/. DOI: 10.3389/fimmu.2022.883639.
[41]
YAO M J, TAN Y. Research progress of MRI radiomics in the evaluation of curative effect of hepatocellular carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(9): 154-158. DOI: 10.12015/issn.1674-8034.2023.09.028.
[42]
LIU M L, YUAN Y, LI M D, et al. MRI radiomics and clinical features combined models for prdicting effect of high-intensity focused ultrasound in treatment of uterine fibroids[J]. Chin J Interv Imag Ther, 2023, 20(7): 390-394. DOI: 10.13929/j.issn.1672-8475.2023.07.002.
[43]
DAI G M, WU W Y, FU L L, et al. Radiomics analysis based on IVIM-DWI quantitative parameters to predict the short-term therapeutic effect of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(9): 56-62, 69. DOI: 10.12015/issn.1674-8034.2023.09.010.
[44]
HE S, FENG Y Q, LIN Q, et al. CT-based peritumoral and intratumoral radiomics as pretreatment predictors of atypical responses to immune checkpoint inhibitor across tumor types: a preliminary multicenter study[J/OL]. Front Oncol, 2021, 11: 729371 [2023-11-25]. https://pubmed.ncbi.nlm.nih.gov/34733781/. DOI: 10.3389/fonc.2021.729371.
[45]
XU H M, DAI Y, MA Y Z, et al. MR T1WI intratumoral and peritumoral radiomics combined with clinical features for predicting effect of neoadjuvant chemotherapy for breast cancer[J]. Chin J Med Imag Technol, 2023, 39(10): 1520-1525. DOI: 10.13929/j.issn.1003-3289.2023.10.016.
[46]
YU Y X, FAN Y F, WANG X M, et al. Gd-EOB-DTPA-enhanced MRI radiomics to predict vessels encapsulating tumor clusters (VETC) and patient prognosis in hepatocellular carcinoma[J]. Eur Radiol, 2022, 32(2): 959-970. DOI: 10.1007/s00330-021-08250-9.
[47]
SCHLICHTEMEIER S M, PANG T C, WILLIAMS N E, et al. A pre-operative clinical model to predict microvascular invasion and long-term outcome after resection of hepatocellular cancer: the Australian experience[J]. Eur J Surg Oncol, 2016, 42(10): 1576-1583. DOI: 10.1016/j.ejso.2016.05.032.
[48]
YANG L, GU D S, WEI J W, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma[J]. Liver Cancer, 2019, 8(5): 373-386. DOI: 10.1159/000494099.
[49]
ZHAO H F, FENG Z C, LI H L, et al. Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma[J]. J Cent South Univ Med Sci, 2022, 47(8): 1049-1057. DOI: 10.11817/j.issn.1672-7347.2022.220027.
[50]
CHONG H H, YANG L, SHENG R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838. DOI: 10.1007/s00330-020-07601-2.
[51]
XIA T Y, ZHOU Z H, MENG X P, et al. Predicting microvascular invasion in hepatocellular carcinoma using CT-based radiomics model[J/OL]. Radiology, 2023, 307(4): e222729 [2023-07-14]. https://pubmed.ncbi.nlm.nih.gov/37097141/. DOI: 10.1148/radiol.222729.

PREV Research progress of convolutional neural networks based on MRI in the diagnosis of meniscus injury
NEXT Resting-state fMRI study on altered spontaneous brain activity of Parkinson,s disease patients with and without rapid eye movement sleep behavior disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn