Share:
Share this content in WeChat
X
Highlights
Advantage and disadvantage of MR imaging for vulnerable plaque
ZHANG Na  LIU Xin  ZHANG Yuan-ting 

DOI:10.3969/j.issn.1674-8034.2010.06.005.


[Abstract] Magnetic resonance imaging (MRI) is technically advantageous in discriminating among tissues with high resolution, which can be used to characterize the morphology and composition of atherosclerotic plaques. Screening and assessing vulnerable plaques with MRI technique has become a focus of clinical research lately. We summarized the state-of-the-art of MRI in evaluating vulnerable plaques in this review.
[Keywords] Atherosclerosis;Vulnerable plaque;Magnetic resonance imaging

ZHANG Na Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055, China

LIU Xin Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055, China

ZHANG Yuan-ting* Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science; Key Lab for Biomedical Informatics and Health Engineering, Chinese Academy of Sciences, Shenzhen 518055, China

*Correspondence to: Zhang YT, E-mail: ytzhang@ee.cuhk.edu.hk

Conflicts of interest   None.

Received  2010-08-10
Accepted  2010-10-14
DOI: 10.3969/j.issn.1674-8034.2010.06.005
DOI:10.3969/j.issn.1674-8034.2010.06.005.

[1]
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient A call for new definitions and risk assessment strategies: Part I & II. Circulation, 2003, 108(14,15):1664-1672, 1772-1778.
[2]
Mitsumori LM, Hatsukami TS, Ferguson MS, et al. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging, 2003, 17(4):410-420.
[3]
Dong L, Wang J, Yarnykh VL, et al. Efficient flow suppressed MRI improves interscan reproducibility of carotid atherosclerosis plaque burden measurements. J Magn Reson Imaging, 2010, 32(2):452-458.
[4]
Oikawa M, Ota H, Takaya N, et al. Carotid magnetic resonance imaging: A window to study atherosclerosis and identify high-risk plaques. Circ J, 2009, 73(10):1765-1773.
[5]
Mihai G, Chung YC, Merchant A, et al. T1-weighted-SPACE dark blood whole body magnetic resonance angiography (DB-WBMRA): Initial experience. J Magn Reson Imaging, 2010, 31(2):502-509.
[6]
Koops A, Ittrich H, Petri S. Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation. Eur Radiol, 2007, 17(1):279-286.
[7]
Calcagno C, Mani V, Ramachandran S, et al. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis, 2010, 13(2):87-99.
[8]
Calcagno C, Vucic E, Mani v, et al. Reproducibility of black blood dynamic contrast-enhanced magnetic resonance imaging in aortic plaques of atherosclerotic rabbits. J Magn Reson Imaging, 2010, 32(1):191-198.
[9]
Yarnykh VL, Yuan C. T1-insensitive flow suppression using quadruple inversion-recovery. Magn Reson Med, 2002, 48(5):899-905.
[10]
Yarnykh VL, Yuan C. Simultaneous outer volume and blood suppression by quadruple inversion-recovery. Magn Reson Med, 2006, 55(5):1083-1092.
[11]
Balu N, Chu B, Hatsukami TS, et al. Comparison between 2D and 3D high-resolution black-blood techniques for carotid artery wall imaging in clinically significant atherosclerosis. J Magn Reson Imaging, 2008, 27(4):918-924.
[12]
Oppenheim C, Touze E, Leclerc X, et al. High resolution MRI of carotid atherosclerosis: looking beyond the arterial lumen. J Radiol, 2008, 89(3Pt 1):293-301.
[13]
Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging, 2010, 31(3):645-654.
[14]
Yamada N, Higashi M, Otsubo R, et al. Association between Signal Hyperintensity on T1-Weighted MR Imaging of Carotid Plaques and Ipsilateral Ischemic Events. Am J Neuroradiol, 2007, 28(2):287-292.
[15]
Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: Comparison of the diagnostic performance of three T1-weighted sequences. Radiology, 2010, 254(2):551-563.
[16]
Viereck J, Ruberg FL, Qiao Y, et al. MRI of atherothrombosis associated with plaque rupture. Arterioscler Thromb Vasc Biol, 2005, 25(1):240-245.
[17]
Yuan C, Kervein WS, Ferguson MS, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging, 2002, 15(1):62-67.
[18]
Chaabane L, Pellet N, Bourdillon MC, et al. Contrast enhancement in Atherosclerosis development in a mouse model:in vivo results at 2 Tesla. MAGMA, 2004, 17(3-6):188-195.
[19]
Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol, 2005, 25(1):234-239.
[20]
Cai J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolusion,contrast-enhanced magnetic resonance imaging and histology. Circulation, 2005, 112(22):3437-3444.
[21]
Pan D, Caruthers SD, Senpan A, et al. Revisiting an old friend: manganese-based MRI contrast agents. 2010, John Wiley & Sons, Inc. ( DOI: ) [ DOI: ]
[22]
Alvarez-Linera J, Benito-Leon J, Escribano J, et al. Prospective evaluation of carotid artery stenosis: elliptic centric contrast enhanced MR angiography and spiral CT angiography compared with didital subtraction angiography. AJNR Am J Neuroradiol., 2003, 24(5):1012-1019.
[23]
Saam T, Hatsukami TS, Takaya N, et al. The vulnerable, or high-risk, atherosclerotic plaque: Noninvasive MR imaging for characterization and assessment. Radiology, 2007, 244(1):64-77.
[24]
Kerwin WS, O'Brien KD, Ferguson MS, et al. Inflammation in Carotid Atherosclerotic Plaque: A Dynamic Contrast-enhanced MR Imaging Study. Radiology, 2006, 241(2): 459-468.
[25]
Chu B, Ferguson MS, Chen H, et al. MRI features of the disruption-prone and the disrupted carotid plaque: A pictorial essay. JACC Cardiovasc Imaging, 2009, 2(7): 883-896.
[26]
Kerwin W, Hooker A, Spilker M, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation, 2003, 107(6): 851-856.
[27]
Kerwin W, Oikawa M, Yuan C, et al. MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med, 2008, 59(3):507-514.
[28]
Mihai G, Chung Y, Kariisa M, et al. Initial feasibility of a multi-station high resolution three-dimensional dark blood angiography protocol for the assessment of peripheral arterial disease. J Magn Reson Imaging, 2009, 30(4):785-793.
[29]
Schneiderman J, Wilensky RL, Weiss A, et al. Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and In situ coronary arteries. J Am Coll Cardiol, 2005, 45(12):1961-1969.
[30]
Underhill HR, Yarnykh VL, Hatsukami TS, et al. Carotid plaque morphology and composition: initial comparison between 1.5- and 3.0-T magnetic field strengths. Radiology, 2008, 248(2):550-560.
[31]
Hinton DP, Cury RC, Chan RC, et al. Bright and black blood imaging of the carotid bifurcation at 3.0T. Eur J Radiol, 2006, 57(3):403-411.
[32]
Helft G, Worthley SG, Fracp M, et al. Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits. J Am Coll Cardiol, 2001, 37(4):1149-1154.
[33]
Phan BA, Chu BC, Kerwin WS, et al. Effect of contrast enhancement on the measurement of carotid arterial lumen and wall volume using MRI. J Magn Reson Imaging, 2006, 23(4):481-485.
[34]
Cai JM, Hatsukami TS, Ferguson MS, et al. Classification of human carotid atheroselerotic lesions within vivo multicontrast magnetic resonance imaging. Circulation, 2002, 106(11):1368-1373.
[35]
Sanz J, Fayad ZA. Imaging of atherosclerotic cardio-vascular disease. Nature, 2008, 451(7181): 953-957.
[36]
Choudhury RP, Fisher EA. Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol, 2009, 29(7): 983-991.
[37]
Sosnovik DE, Nahrendorf M, Weissleder R. Molecular Magnetic Resonance Imaging in Cardiovascular Medicine. Circulation, 2007, 115(15):2076-2086.
[38]
Brinegar C, Wu YJ, Foley LM, et al. Real-time cardiac MRI without triggering, gating, or breath holding. IEEE Eng Med Biol Soc, 2008, 2008: 3381-3384.
[39]
Balu N, Yarnykh VL, Scholnick J, et al. Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J Magn Reson Imaging, 2009, 30(5):1209-1214.
[40]
Chen H, Cai J, Zhao X, et al. Localized measurement of atherosclerotic plaque inflammatory burden with dynamic contrast-enhanced MRI. Magn Reson Med, 2010, 64(2):567-573.
[41]
Ruberg FL, Viereek J, Phinikaridou A, et al. Identification of eholesteryl esters in human carotid atherosclerosis by ex vivo image-guided proton MRS. J Lipid Res, 2006, 47(2):310-317.

PREV Comparison of different imaging methods for detection of vulnerable plaque
NEXT Current status of MR imaging for vulnerable plaque in clinical application
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn