Share:
Share this content in WeChat
X
Technical Article
A perception on the development of the virtual scan technology for the magnetic resonance imaging
KUANG Bin  HE Chao-ming 

DOI:10.3969/j.issn.1674-8034.2011.03.012.


[Abstract] The virtual scan technology for MRI has been developed since 1980’s. It has made a big progress with the development of the following aspects: (1) The development of the computing kernel for the virtual scan of the MRI. (2) The development of the computing technology, the visualization, the numerical approach, and parallel computing technology. (3) The development of the application technology of MRI. (4) The development of the virtual man, MRI-man. This paper introduces several aspects of the development of the virtual scan. In addition, some major issues in this area are also mentioned and some develop ideas have been proposed as well.
[Keywords] Magnetic resonance imaging;Virtual scan;Parallel computing;Simulation

KUANG Bin* SW Dept., Siemens Mindit Magnetic Resonance Ltd., Shenzhen 518057, China

HE Chao-ming SW Dept., Siemens Mindit Magnetic Resonance Ltd., Shenzhen 518057, China

*Correspondence to: Kuang B, E-mail: bin.kuang@siemens.com

Conflicts of interest   None.

Received  2011-04-05
Accepted  2011-05-06
DOI: 10.3969/j.issn.1674-8034.2011.03.012
DOI:10.3969/j.issn.1674-8034.2011.03.012.

[1]
赵喜平.磁共振成像.北京:科学出版社, 2004:1096-1112.
[2]
王超洪,孙志国,张琼,等. syngo NATIVE无对比剂MR血管成像技术.磁共振成像, 2010, 1(3):214-217.
[3]
孙治国.西门子磁共振技术在乳腺疾病诊断中的应用. 2010, 1(6):465-467.
[4]
Lufkin RB, Keen R, Rhodes M, et al. MRI Simulator for Instruction in Pulse-Sequence Selection. AJR Am J Roentgenol, 1986, 147(1): 199-202.
[5]
Cox RW. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Comput Biomed Res, 1996, 29(3): 162-173.
[6]
Drobnjak I, Gavaghan D, Süli E, et al. Development of a functional magnetic resonance imaging simulator for modeling realistic rigid-body motion artifacts. Magn Reson Med, 2006, 56(2): 364-380.
[7]
Xu N, Li Y, Paschal CB, et al. Simulation of susceptibility-induced distortions in fMRI. Progress in biomedical optics and imaging, 2006, 7(3): 2071-2079.
[8]
Xu N, Fitzpatrick JM, Li Y, et al. Computer-generated fMRI phantoms with motion-distortion interaction. Magn Reson Imaging, 2007, 25(10): 1376-1384.
[9]
Bagarinao E, Matsuo K, Nakai T, et al. BAX: A Toolbox for the Dynamic Analysis of Functional MRI Datasets. Neuroinformatics, 2008, 6(2): 109-115.
[10]
Mekle R, Laine AF, Wu EX. Combined MR data acquisition of multicontrast images using variable acquisition parameters and K-space data sharing. IEEE Trans Med Imaging, 2003, 22(7): 806-823.
[11]
Pavel S, Richard GSS. Time Domain Simulation of Fourier Imaging by summation of isochromats. International Journal of Imaging Systems and Technology, 1997, 8(15): 419-426.
[12]
张煜.MRI-Man可视化模型建立中弹性配准新方法及显示方法研究.广州:中国人民解放军第一军医大学,生物医学工程博士论文, 2000. DOI: CNKI:CDMD:1.2003.098294.
[13]
Bittoun J, Taquin J, Sauzade M. A Computer Algorithm for the Simulation of any Nuclear Magnetic Resonace(NMR) Imaging Method. Magn Reson Imaging, 1984, 2(2): 113-120.
[14]
Summers RM, Axel L, Israel S. A computer simulation of nuclear magnetic resonance imaging. Magn Reson Med, 1986, 3(3): 363-376.
[15]
Hanson LG. A Graphical Simulator for Teaching Basic and Advanced MR Imaging Techniques. http://radiographics.rsna.org/content/27/6/e27.full.2007.
[16]
de Graaf CN, Bakker CJ. Simulation Procedure to Determine Nuclear Magnetic Resonance Imaging Pulse Sequence Parameters for Optimal Tissue Contrast. J Nucl Med, 1986, 27(2): 281-286.
[17]
Olsson MB, Wirestam R, Persson BR. A computer simulation program for mr imaging: application to rf and static magnetic field imperfections. Magn Reson Med, 1995, 34(4): 612-617.
[18]
Smith SA, Levante TO, Meier BH, et al. Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach. Journal of Magnetic Resonance, Series A, 1994, 106(1): 75-105.
[19]
Stöcker T, Vahedipour K, Pflugfelder D, et al. A High-Performance Computing MRI Simulations. Magn Reson Med, 2010, 64(1): 186-193.
[20]
Jochimsen TH, von Mengershausen M. ODIN—Object-oriented Development Interface for NMR. J Magn Reson, 2004, 170(1): 67-78.
[21]
Kwan RK, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging, 1999, 18 (11): 1085-1097.
[22]
Stéphane B, Laurent C. Fast approximate solution of Bloch equation for simulation of RF artifacts in Magnetic Resonance Imaging. Mathematical and Computer Modelling, 2008, 48(11-12): 1901-1913.
[23]
陈思中,戚海峰,谢海滨,等.一种通用的MRI计算机模拟软件.波谱学杂志, 1996, 13(5): 491-501.
[24]
Kavita D, T.S. M, Arvind, et al. Quantum computation using NMR. Current Science, 2000. 79 (10): 1447-1458.
[25]
Blanton WB. BlochLib: a fast NMR C++ tool kit. J Magn Reson, 2003, 162(2): 269-283.
[26]
Magnus Helgstrand, Peter Allard. QSim, a program for NMR simulations. J Biomol NMR, 2004, 30(1): 71-80.
[27]
Cai CB, Dong JY, Cai SH, et al. Modeling and simulation of magnetic resonance imaging based on intermolecular multiple quantum coherences. Computer Simulation, Modeling, and Bus, 2006, 6358.
[28]
Cai CB, Lin MJ, Chen Z, et al. SPROM - an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences. Comptes Rendus Physique, 2008, 9(1): 119-126.
[29]
Hossein-Zadeh GA, Soltanian-Zadeh H. Simulation of MRI with field nonuniformities. In Medical Imaging 1998: Physics of Medical Imaging. San Diego, CA, USA. 1998.
[30]
Belaroussi B, Benoit-Cattin H, Odet C. CASTI: Correction of Susceptibility Artifact in MR Images using MRI Simulation, in Image Processing. Atlanta, GA DOI: 2006 IEEE International Conference, 2006: 897-900.
[31]
Sun HJ, Lin T, Chen S, et al. Numerical simulations of edge detection effect due to chemical shift variation in intermolecular multiple-quantum coherence MRI. Xiamen: IT in Medicine and Education, 2008. ITME 2008. IEEE International Symposium, 2008.
[32]
Ma C, Chu X, Li Y, et al. Simulations of eddy current effects in MRI images. Journal of Tsinghua University (Science and Technology) (China), 2007, 47(4): 457-461.
[33]
Tony S, Kaveh V, N. JS. HPC Simulation of Magnetic Resonance Imaging, in Parallel computing: architectures, algorithms, and applications, Bischof C., DOI: . 2009. 157-164.
[34]
Yo TM, Chitose NM, Yoshitaka BM, et al. A High-Speed MRI simulator using the Transition Matrix Method and Periodicity of Manetization. Systems and Computers in Japan, 1995, 26(2): 566-572.
[35]
Petersson JS, Christoffersson JO, Golman K. MRI simulation using the k-Space Formalism. Magnetic Resonance Imaging, 1993, 11(4): 557-568.
[36]
Josef D, Kristine G, Veena H, et al. Novel Software Architecture for Rapid Development of magnetic resonance applications. Concepts in Magnetic Resonance, 2002, 15(3): 216-237.
[37]
Benoit-Cattin H, Collewet G, Belaroussi B, et al. The SIMRI project: a versatile and interactive MRI simulator. J Magn Reson, 2005, 173(1): 97-115.
[38]
Benoit-Cattin H, Bellet F, Montagnat J, et al. Magnetic resonance imaging (MRI) simulation on a grid computing architecture. in Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium. 2003.
[39]
SBerti G, Benker S, Fenner JW, et al. Medical Simulation Services via the Grid. HealthGrid Workshop 2003. DOI: : http://eprints.ecs.soton.ac.uk/8949/.2003.
[40]
Kottha S, et al. Medical Image Processing in MediGRID. in German e-Science Conference. Baden-Baden: Wilhelm Bühler. 2007.
[41]
Bellet F, Nistoreanu I, Pera C, et al. Magnetic Resonance Imaging (MRI) Simulation on EGEE Grid Architecture: A Web Portal Design. Stud Health Technol Inform, 2006. 120: 34-42.
[42]
Benoit-Cattin H, Bellet F, Montagnat J, et al. Magnetic resonance imaging (MRI) simulation on a grid computing architecture. in Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on 2010. Villeurbanne, France Conference Publishing Services.
[43]
Brenner AR, Kürsch J, Noll TG. Parallelized High-Performance MRI Simulation on a Workstation Cluster. Vancouver: International Society for Magnetic Resonance in Medicine, 5th Scienti Meeting. 1997.
[44]
Brenner AR, Kürsch J, Noll TG. Distributed large-scale simulation of magnetic resonance imaging. MAGMA, 1997, 5(2): 129-138.
[45]
van Beek JD. matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab. J Magn Reson, 2007, 187(1): 19-26.
[46]
Letourneau PJ, Boyko R, Sykes BD. PJNMR: a platform-independent graphical simulation tool for NMR spectroscopy. J Magn Reson, 2003, 161(2): 154-167.
[47]
Jie S, Ying L, Jianqi L, et al. A powerful graphical pulse sequence programming tool for magnetic resonance imaging. MAGMA, 2005, 18(6): 332-342.
[48]
Konstantin B. SignalDraw: GUI Tool For Generating Pulse Sequences. 2005.
[49]
Mark KT. MRI Toolbox-A MATLAB-based system for manipulation of MRI data. http://citeseerx.ist.psu.edu/viewdoc/summarydoi=10.1.1.40.2515.1999.
[50]
Young K, Matson GB, Govindaraju V, et al. Spectral Simulations Incorporating Gradient Coherence Selection. J Magn Reson, 1999, 140(1): 146-152.
[51]
Bak M, Rasmussen JT, Nielsen NC. SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy. J Magn Reson, 2000, 147(2): 296-330.
[52]
Nicholas P, Fushman D, Ruchinsky V, et al. The Virtual NMR Spectrometer: A Computer Program for Efficient Simulation of NMR Experiments Involving Pulsed Field Gradients. J Magn Reson, 2000, 145(2): 262-275.
[53]
Doorly L, Doorly DJ, Ljungdahl M. Computational Simulation Of Magnetic Resonance Imaging Techniques For Velocity Field Measurements. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.1683.1996.
[54]
Papaharilaou Y, Doorly DJ, Sherwin SJ, et al. Combined MR imaging and numerical simulation of flow in realistic arterial bypass graft models. Biorheology, 2002, 39(3-4): 525-531.
[55]
Grobelnik B, Vidmar J, Tratar G, et al. Flow-induced permeation of non-occlusive blood clots: an MRI study and modelling. Eur Biophys J, 2007, 37(7): 1229-1233.
[56]
Christopher KA, Alex DB, Nie ZH. The Simulation and Optimization of NMR Experiments using a Liouville Space Method. 2006.
[57]
Kwan RKS, Evans AC, Pike GB. An Extensible MRI Simulator for Post-Processing Evaluation in Visualization in Biomedical Computing 4th International Conference. Hamburg, Germamy. 1996.
[58]
Chen J, Xi'an M. Numerical Simulation of Water signal under radio-frequency irradiation in nuclear magnetic resonance experiments. Progress In Natural Science, 1996, 6(6): 667-675.
[59]
Cai CB, Chen Z, Cai SH, et al. A simulation algorithm based on Bloch equations and product operator matrix application to dipolar and scalar couplings. J Magn Reson, 2005, 172(2):242-253.
[60]
Cai CB, Chen Z, Cai SH, et al. POM: A Simulation Program for NMR under Inter- and Intramolecular Interactions. 2006, 162(2003): 3046.
[61]
Demko AB, Pizzi NJ. Scopira: an open source C++ framework for biomedical data analysis applications. Software: Practice and Experience, 2009, 39(6): 641-660.

PREV Progress of the research on the role of key node of precuneus/posterior cingulated cortex in default brain functional network
NEXT MRI diagnosis of prostate cancer and the effect of MRI in the therapy selection of prostate cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn