Share:
Share this content in WeChat
X
Review
Application of superparamagnetic iron oxide nanoparticles as contrast agents in brain magnetic resonance imaging
ZHANG Bao-lin  ZHANG Hui-yang 

DOI:10.3969/j.issn.1674-8034.2011.05.012.


[Abstract] Superparamagnetic iron oxide nanoparticles have a variety of biomedical applications because of their magnetic property and biocompatibility. The basic principles and parameters of the magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) are presented. Recent advances of iron oxide nanoparticles with various properties acting as MRI contrast agents are described. The iron oxide nanoparticles modified or conjugated with monoclonal antibodies, proteins, peptides, nucleotides, and other particular polymers, are taken up specifically, and can be used as contrast agents in MRI to enhance detection of neurodegenerative diseases, to monitor targeted drug delivery and therapeutic processes, and to image targeted biomolecules or cells; Iron oxide nanoparticles coated with dextran or polyethylene glycol (PEG) have long blood half-life, and are used as fMRI contrast agents to measure haemodynamic changes after enhanced neural activity. Further studies are needed on the control of particle sizes and the physicochemical properties of the modifications, increase of crystallinity and consequently saturation magnetization, conjugation with different targeting substances, the development of hybrid nanoparticles with optical and magnetic properties, and comprehension of the interactions between the nanoparticles and biomolecules, cells and tissues.
[Keywords] Superparamagnetic iron oxide nanoparticles;Contrast agents;Magnetic resonance imaging;Brain

ZHANG Bao-lin* School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China

ZHANG Hui-yang Department of Radiology, Affiliated Hospital of Guilin Medical College, Guilin, 541001, China

*Correspondence to: Zhang BL, E-mail: zhangbaolin@glite.edu.cn

Conflicts of interest   None.

Received  2011-03-04
Accepted  2011-07-01
DOI: 10.3969/j.issn.1674-8034.2011.05.012
DOI:10.3969/j.issn.1674-8034.2011.05.012.

[1]
Weinstein JS, Varallyay CG, Dosa E, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cerebr Blood F Met, 2010, 30(1): 15-35.
[2]
Corot C, Robert P, Idée JM, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliver Rew, 2006, 58(14): 1471-1504.
[3]
Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem, 2009, 19(): 6274-6293.
[4]
Figuerola A, Corato RD, Manna L, et al. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res, 2010, 62(2): 126-143.
[5]
Weissleder R, Bogdanov A, Neuweltb EA, et al. Long-circulating iron oxides for MR imaging. Adv Drug Deliver Rew, 1995, 16(2-3): 321-324.
[6]
Wilhelm C, Gazeau F. Leading opinion: universal cell labelling with anionic magnetic nanoparticles. Biomaterials, 2008, 29(22): 3161-3174.
[7]
Muller K, Skepper JN, Tang TY, et al. Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) in human monocyte-macrophages: implications for magnetic resonance imaging. Biomaterials, 2008, 29(17): 2656-2662.
[8]
Heymer A, Haddad D, Weber M, et al. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials, 2008, 29(10): 1473-1483.
[9]
陈长青,王小宜,陈晨,等. SPIO标记脂肪干细胞移植治疗大鼠脑梗死的磁共振示踪成像研究.磁共振成像, 2010, 1(1): 50-54.
[10]
Doyle PS, Bibette J, Bancaud A, et al. Self-assembled magnetic matrices for DNA Separation Chips. Science, 2002, 295(5563): 2237-2237.
[11]
Orringer DA, Koo YL, Kopelman R, et al. Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin Pharmacol Ther, 2009, 85(5): 531-534.
[12]
Hu FQ, Wei L, Zhou Z, et al. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater, 2006, 18: 2553-2556.
[13]
Serda RE, Adolphi NL, Bisoffi M, et al. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging, 2007, 6(4): 277-288.
[14]
Park JH, Maltzahn GV, Zhang LL, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater, 2008, 20(9): 1630-1635.
[15]
Jordan A, Scholz R, Wust P, et al. Invited paper: magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater, 1999, 201(1-3): 413-419.
[16]
Hwu JR, Lin YS, Josephrajan T, et al. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc, 2009, 131(1): 66-68.
[17]
Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliver Rew, 2011, 63(1-2): 24-46.
[18]
Liu HL, Hua MY, Yang HW, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A, 2010, 107(34): 15205-15210.
[19]
Mejías R, Costo R, Roca AG, et al. Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery. J Control Release, 2008, 130(2):168-174.
[20]
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater, 2009, 8(7): 543-557.
[21]
Cheng FY, Su CH, Yang YS, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26(7): 729-738.
[22]
杨文胜,高明远,白玉白.纳米材料与生物技术.北京:化学工业出版社, 2005: 76-79.
[23]
Xu ZC, Shen CM, HouYL, et al. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater, 2009, 21(9): 1778-1780.
[24]
Cheon JW, Kang NJ, Lee SM, et al. Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc, 2004, 126(7): 1950-1951.
[25]
Maity D, Kale SN, Kaul-Ghanekar R, et al. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater, 2009, 321(19): 3093-3098.
[26]
Gonçalves RH, Cardoso CA, Leite ER. Synthesis of colloidal magnetite nanocrystals using high molecular weight solvent. J Mater Chem, 2010, 20(6): 1167-1172.
[27]
哈舍米,布兰得利,利桑蒂. MRI基础尹建忠译.第二版.天津:天津科技翻译出版公司, 2004: 20-52.
[28]
包尚联.脑功能成像物理学.郑州:郑州大学出版社, 2006: 146-248.
[29]
Logothetis NK. What we can do and what we cannot do with fMRI. Nature, 2008, 453(7197): 869-878.
[30]
高欣,汤伟军,王霞,等.7.0T MR下纯氧吸入后大鼠脑灰、白质弛豫值与脑血流变化.磁共振成像, 2010, 1(6): 459-464.
[31]
Jun YW, Lee JH, Cheon JW. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed, 2008, 47(28): 5122-5135.
[32]
Berry I, Benderbous S, Ranjeva JP, et al. Contribution of Sinerem ® used as blood-pool contrast agent: detection of cerebral blood volume changes during Apnea in the Rabbit. Magn Reson Med, 1996, 36(3): 415-419.
[33]
王芳,陆菁菁,金征宇,等.超小超顺磁性氧化铁颗粒联合磁化传递对比成像在实验性变态反应性脑脊髓炎的应用.中国医学科学院学报, 2009, 31(2): 177-181.
[34]
McAteer MA, Sibson NR, Mühlen C, et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med, 2007, 13(10): 1253-1258.
[35]
Teixidó M, Giralt E. The role of peptides in blood-brain barrier nanotechnology. J Pept Sci, 2008, 14(2): 163-173.
[36]
Denora N, Trapani A, Laquintana V, et al. Recent advances in medicinal chemistry and pharmaceutical technology-strategies for drug delivery to the brain. Curr Top Med Chem, 2009, 9(2): 182-196.
[37]
Cengelli F, Maysinger D, Tschudi-Monnet F, et al. Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther, 2006, 318(1): 108-116.
[38]
Liu CH, Huang S, Cui JK, et al. MR contrast probes that trace gene transcripts for cerebral ischemia in live animals. FASEB J, 2007, 27(11): 3004-3015.
[39]
Lee JH, Jun YW, Yeon SI, et al. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed, 2006, 45(48): 8160-8162.
[40]
Vanduffel W, Fize D, Peuskens H, et al. Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science, 2002, 298(5592): 413-415.
[41]
Driver J, Blankenburg F, Bestmann S, et al. Concurrent brain-stimulation and neuroimaging for studies of cognition. Trends Cogn Sci, 2009,13(7):319-327.
[42]
Ekstrom LB, Roelfsema PR, Arsenault JT, et al. Bottom-up dependent gating of frontal signals in early visual cortex. Science, 2008, 321(5887): 414-417.

PREV Problems in manuscripts of clinical studies of functional magnetic resonance imaging
NEXT Advances of magnetic resonance perfusion imaging in hypertensive cerebrovascular diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn