Share:
Share this content in WeChat
X
Review
Assessment of neonatal brain development by diffusion tensor imaging
HOU Xin  YANG Jian  YU Bo-lang 

DOI:10.3969/j.issn.1674-8034.2012.01.017.


[Abstract] Diffusion tensor imaging (DTI) is a novel, sensitive, and quantified technique to detect the diffusion feature of water molecule. In this paper, we reviewed the basic principle and parameters of DTI, the processing methods of DTI data, and the different changes of parameters of DTI with the neonatal brain white matter and gray matter. It showed that parameters of DTI changed regularly with development of premature and neonatal brain white matter, and DTI is helpful to evaluate the development of brain white matter quantitatively.
[Keywords] Brain development;Diffusion tensor imaging;Neonate

HOU Xin Department of Radiology, the First Affiliated Hospital of Medical College, Xi' an Jiaotong University, Xi'an 710061, China

YANG Jian * Department of Radiology, the First Affiliated Hospital of Medical College, Xi' an Jiaotong University, Xi'an 710061, China

YU Bo-lang Department of Radiology, the First Affiliated Hospital of Medical College, Xi' an Jiaotong University, Xi'an 710061, China

*Correspondence to: Yang J, E-mail: cjr.yangjian@vip.163.com

Conflicts of interest   None.

Received  2011-12-07
Accepted  2012-01-06
DOI: 10.3969/j.issn.1674-8034.2012.01.017
DOI:10.3969/j.issn.1674-8034.2012.01.017.

[1]
Sidman RL, Rakic P. Development of the human nervous system. In: Haymaker W, Adams RD, ed. Histology and Histopathology of the Nervous System. Springfield: Charles C. Thomas, 1982: 3-145.
[2]
Gilmore JH, Lin W, Prastawa MW, et al. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J Neurosci, 2007, 27(6): 1255-1260.
[3]
Richa Trivedi, Rakesh K. Gupta, Nuzhat Husain, et al. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology. Neuroradiology, 2009, 51(9): 567-576.
[4]
Bartha AI, Yap KRL, Miller SP, et al. The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR Am J Neuroradiol, 2007, 28(6): 1015-1021.
[5]
Counsell SJ, Edwards AD, Chew ATM, et al. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain, 2008, 131(Pt 12): 3201-3208.
[6]
Feldman HM, Yeatman JD, Lee ES, et al. Diffusion tensor imaging: a review for pediatric researchers and clinicians. Dev Behav Pediatr, 2010, 31(4): 346-356.
[7]
Westin CF, Peled S, Gudbjartsson H, et al. Geometrical diffusion measures for MRI from tensor basis analysis. Proceedings of the 5th Annual Metting of ISMRM, 1997: 1742.
[8]
Oishi K, Mori S, Donohue PK, et al. Multi-contrast human neonatal brain atlas: Application to normal neonate development analysis. NeuoImage, 2011, 56(1): 8-20.
[9]
Coats JS, Freeberg A, Pajela EG, et al. Meta-analysis of apparent diffusion coefficients in the newborn brain. Pediatr Neurol, 2009, 41(4): 263-274.
[10]
Maas LC, Mukherjee P, Carballido-Gamio J, et al. Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage, 2004, 22(3): 1134-1140.
[11]
McKinstry RC, Mathur A, Miller JH, et al. Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex, 2002, 12(12): 1237-1243.
[12]
Kroenke CD, Bretthorst GL, Inder TE, et al. Diffusion MR imaging characteristics of the developing primate brain. Neuroimage, 2005, 25(4): 1205-1213.
[13]
Huppi PS, Maier SE, Peled S, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res, 1998, 44(4): 584-590.
[14]
Partridge SC, Mukherjee P, Hentry RG, et al. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. NeuroImage, 2004, 22(3): 1302-1314.
[15]
Giorgio A, Watkins KE, Douaud G, et al. Changes in white matter microstructure during adolescence. NeuroImage, 2008, 39(1): 52-61.
[16]
Provenzale JM, Liang L, DeLong D, et al. Diffusion tensor imaging assessment of brain white matter maturation during the first postnatal year. AJR Am J Roentgenol, 2007, 189(2): 476-486.
[17]
Löbel U, Sedlacik J, Güllmar D, et al. Diffusion tensor imaging: the normal evolution of ADC, RA, FA, and eigenvalues studied in multiple anatomical regions of the brain. Neuroradiology, 2009, 51(4): 253-263.
[18]
Neil JJ, Shiran SI, McKinstry RC, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology, 1998, 209(1): 57-66.
[19]
Volpe, JJ. Overview: normal and abnormal human brain development. Ment Retard Dev Disabil Res Rev, 2000, 6(1): 1-5.
[20]
Gao W, Lin W, Chen Y, et al. Temporal and spatial development of axonal maturation and myelination of white matter in the developing brain. AJNR Am J Neuroradiol, 2009, 30(2): 290-296.
[21]
Chen Y, An H, Zhu H, et al. Longitudinal regression analysis of spatial-temporal growth patterns of geometrical diffusion measures in early postnatal brain development with diffusion tensor imaging. NeuroImage, 2011, 58(4): 993-1005.
[22]
Tanner SF, Ramenghi LA, Ridgway JP, et al. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol, 2000, 174(6): 1643-1649.
[23]
Toft PB, Leth H, Peitersen B, et al. The apparent diffusion coefficient of water in gray and white matter of the infant brain. J Comput Assist Tomogr, 1996, 20(6): 1006-1011.
[24]
Anjari M, Srinivasan L, Allsop LM, et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage, 2007, 35(3): 1021-1027.
[25]
Hasegawa T, Yamada K, Morimoto M, et al. Development of corpus callosum in preterm infants is affected by the prematurity: in vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr Res, 2011, 69(3): 249-254.
[26]
Nagy Z, Westerberg H, Skare S, et al. Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr Res, 2003, 54(5): 672-679.
[27]
Mullen KM, Vohr BR, Katz KH, et al. Preterm birth results in alterations in neural connectivity at age 16 years, NeuroImage, 2011, 54 (4): 2563-2570.
[28]
Rose SE, Hatzigeorgiou X, Strudwick MW, et al. Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med, 2008, 60(4): 761-767.
[29]
de Bruïne FT, van Wezel-Meijler G, Leijser LM, et al. Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants. EurRadiol, 2011, 21(3): 538-547.
[30]
Bassi L, Ricci D, Volzone A, et al. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain, 2008,131(Pt2): 573-582.
[31]
Als H, Duffy FH, McAnulty GB, et al. Early experience alters brain function and structure. Pediatrics, 2004, 113(4): 846-857.
[32]
Lubsen J, Vohr B, Myers E, et al. Microstructural and functional connectivity in the developing preterm brain. Semin Perinatol, 2011, 35(1): 34-43.

PREV Application of BOLD-fMRI in cerebral neoplasms
NEXT Paved the road of eighty years with absorption and dedication: Exclusive interview with the famous Chinese radiologist Min Peng-qiu
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn