Share:
Share this content in WeChat
X
Review
Progress of MRI-optical dual-modality molecular imaging probes
ZHOU Ming  LIU Zhi-guo  YE Qiu-ji  ZENG Wen-bin 

DOI:10.3969/j.issn.1674-8034.2013.01.014.


[Abstract] Noninvasive molecular imaging techniques are important for understanding the actual conditions and mechanisms of biological systems. More interests in the development of noninvasive molecular imaging have shifted toward multimodality imaging, for no single imaging modality possesses all ideal traits of being quantitative and longitudinal, and provides both high resolution and sensitivity. The combination of non-ionizing MRI and fluorescent techniques has received more attention because of their highly complementary capabilities for anatomical resolution and detection sensitivity. Herein, we report the latest progress in the field of MRI-fluorescent dual modality imaging.
[Keywords] Magnetic resonance imaging;Fluorescence;Molecular probes;Diagnstic imaging

ZHOU Ming School of Pharmaceutical Sciences and Molecular Imaging Research Center, Central South University, Changsha 430013, China

LIU Zhi-guo School of Pharmaceutical Sciences and Molecular Imaging Research Center, Central South University, Changsha 430013, China

YE Qiu-ji School of Pharmaceutical Sciences and Molecular Imaging Research Center, Central South University, Changsha 430013, China

ZENG Wen-bin* School of Pharmaceutical Sciences and Molecular Imaging Research Center, Central South University, Changsha 430013, China

*Correspondence to: Zeng WB, E-mail: wbzeng@hotmail.com

Conflicts of interest   None.

Received  2012-10-25
Accepted  2012-11-29
DOI: 10.3969/j.issn.1674-8034.2013.01.014
DOI:10.3969/j.issn.1674-8034.2013.01.014.

[1]
Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature, 2008, 452(7187): 580-590.
[2]
黄佳国,曾文彬,周明,等.双模态分子探针研究进展.生物物理学报,2011, 27(4): 301-311.
[3]
Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Mol Imaging, 2009, 8(2): 87-100.
[4]
Wang G, Su XG. The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. Analyst, 2011, 136(9): 1783-1798.
[5]
Shao N, Zhang Y, Cheng S, et al. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem, 2005, 77(22): 7294-7303.
[6]
Kudo K, Momotake A, Kanna Y, et al. Development of a quinoxaline-based fluorescent probe for quantitative estimation of protein binding site polarity. Chem Commun, 2011, 47(13): 3867-3869.
[7]
Fisher G, Rice GC, Hahn GM. Dansyl lysine, a new probe for assaying heat-induced cell killing and thermotolerance in vitro and in vivo. Cancer Res, 1986, 46(10): 5064-5067.
[8]
Hueber MM, Staubli AB, Kustedjo K, et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem, 1998, 9(2): 242-249.
[9]
Kotkova Z, Kotek J, Jirak D, et al. Cyclodextrin-based bimodal fluorescence/MRI contrast agents: an efficient approach to cellular imaging. Chemistry, 2010, 16(63): 10094-10102.
[10]
Guo K, Berezin MY, Zheng J, et al. Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T1 relaxivity for in vivo multimodal imaging. Chem Commun, 2010, 46(21): 3705-3707.
[11]
Dong D, Jing X, Zhang X, et al. Gadolinium(Ⅲ)-fluorescein complex as a dual modal probe for MRI and fluorescence zinc sensing. Tetrahedron, 2012, 68(1): 306-310.
[12]
Talanov VS, Regino CA, Kobayashi H, et al. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett, 2006, 6(7): 1459-1463.
[13]
Zhang W, Zhang Y, Shi X, et al. Rhodamine-B decorated superparamagnetic iron oxide nanoparticles: preparation, characterization and their optical/magnetic properties. Mater Chem, 2011, 21(40): 16177-16183.
[14]
Kang, Kim JS, Kim YH, et al. Development and in vivo imaging of a PET/MRI nanoprobe with enhanced NIR fluorescence by dye encapsulation. Nanomedicine, 2012, 7(2): 219-229.
[15]
Benyettou F, Lalatonne Y, Chebbi I, et al. A multimodal magnetic resonance imaging nanoplatform for cancer theranostics. Phys Chem, 2011, 13(21): 10020-10027.
[16]
Bruchez M Jr, Moronne M, Gin P, et al.Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016.
[17]
Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018.
[18]
Wang D, He J, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett, 2004, 4(3): 409-413.
[19]
Prinzen L, Miserus RJ, Dirksen A, et al. Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots. Nano Lett, 2007, 7(1): 93-100.
[20]
Kim H, Achermann M, Balet LP, et al.Synthesis and characterization of Co/CdSe Core/Shell nanocomposites: bifunctional magnetic-optical nanocrystals. J Am Chem Soc, 2005, 127(2): 544-546.
[21]
Gu H, Zheng R, Zhang X, et al. Facile one-pot synthesis of bifunctional heterodimers of nanopatical: aconjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc, 2004, 126(18): 5664-5665.
[22]
Mulder WJ, Koole R, Brandwijk RJ, et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett, 2006, 6(1): 1-6.
[23]
Xie HY, Zuo C, Liu Y, et al. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism. Small, 2005, 1(5): 506-509.
[24]
Chen BD, Zhang H, Cai C, et al. Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging. J Mater Chem, 2010, 20(44): 9895-9902.
[25]
Yunus WM, Chan KS, WAN MD, et al. Study on photobleaching of methylene blue doped in PMMA, PVA and GELATIN using photoacoustic technique. J Nonlinear Opt Phys, 2003, 12(1): 91-100.
[26]
Chen B, Zhang H, Du N, et al. Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd, Co-doped LaF3 as a multimodal imaging probe. J Colloid Interface Sci, 2012, 367(1): 61-66.
[27]
Pellegatti L, Zhang J, Drahos B, et al. Pyridine-based lanthanide complexes: towards bimodal agents operating as near infrared luminescent and MRI reporters. Chem Comm, 2008, (48): 6591-6593.
[28]
Imbert D, Comby S, Chauvin AS, et al.Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range. Chem Comm, 2005, (11): 1432-1434.
[29]
Tallec G, Imber Dt, Fries PH, et al. Highly stable and soluble bis-aqua Gd, Nd, Yb complexes as potential bimodal MRI/NIR imaging agents. Dalton Trans, 2010, 39(40): 9490-9492.
[30]
Koullourou T, Natrajan LS, Bhavsar H, et al. Synthesis and spectroscopic properties of a prototsype single molecule dual imaging agent comprising a heterobimetallic rhenium gadolinium complex. J Am Chem Soc, 2008, 130(7): 2178-2179.
[31]
Liu JL, He W, Zhang L, et al. Bifunctional nanoparticles with fluorescence and magnetism via surface-initiated AGET ATRP mediated by an iron catalyst. Langmuir, 2011, 27(20): 12684-12692.
[32]
Nie L, Ou Z, Yang S, et al. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med Phys, 2010, 37(8): 4193-4200.
[33]
Bao J, Chen W, Liu T, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 2007, 1(4): 293-298.
[34]
Wang D, Li YD. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J Am Chem Soc, 2010, 132(18): 6280-6281.
[35]
Zhou T, Wu BY, Da X. Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J Mater Chem, 2012, 22(2): 470-477.
[36]
Li K, Zhang ZP, Luo M, et al. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells. Nanoscale, 2012, 4(1): 188-193.

PREV Application progresses of new magnetic resonance imaging techniques in epilepsy
NEXT The application of diffusion -weighted magnetic resonance imaging in liver
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn