Share:
Share this content in WeChat
X
Review
Advance of cerebral magnetic resonance angiography at 3.0 T
LI Ming-li 

DOI:10.3969/j.issn.1674-8034.2012.04.015.


[Abstract] This review focused on the clinical use and recent advance of Magnetic resonance angiography in cerebral artery stenosis, cerebral aneurysm, arteriovenous malformation, and cerebral venous occlusion disease.
[Keywords] Cerebrovascular disorders;Magnetic resonance angiography

LI Ming-li Departments of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China

Conflicts of interest   None.

Received  2012-10-15
Accepted  2012-10-26
DOI: 10.3969/j.issn.1674-8034.2012.04.015
DOI:10.3969/j.issn.1674-8034.2012.04.015.

[1]
Huang BY, Castillo M. Neurovascular imaging at 1.5 tesla versus 3.0 tesla. Magn Reson Imaging Clin N Am, 2009, 17(1): 29-46.
[2]
Choi CG, Lee DH, Lee JH, et al. Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3 T. AJNR Am J Neuroradiol, 2007, 28(3): 439-446.
[3]
Akashi T, Taoka T, Ochi T, et al. Branching pattern of lenticulostriate arteries observed by MR angiography at 3.0 T. Jpn J Radiol, 2012, 30(4): 331-335.
[4]
Chen YC, Li MH, Li YH, et al. Analysis of correlation between the number of lenticulostriate arteries and hypertension based on high-resolution MR angiography findings. AJNR Am J Neuroradiol, 2011, 32(10): 1899-1903.
[5]
Hendrikse J, Zwanenburg JJ, Visser F, et al. Noninvasive depiction of the lenticulostriate arteries with time-of-flight MR angiography at 7.0 T. Cerebrovasc Dis, 2008, 26(6): 624-629.
[6]
White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology, 2000, 217(2): 361-370.
[7]
Tang PH, Hui F, Sitoh YY. Intracranial aneurysm detection with 3 T magnetic resonance angiography. Ann Acad Med Singapore, 2007, 36(6): 388-393.
[8]
Li MH, Li YD, Tan HQ, et al. Contrast-free MRA at 3.0 T for the detection of intracranial aneurysms. Neurology, 2011, 77(7): 667-676.
[9]
Chen YC, Sun ZK, Li MH, et al. The clinical value of MRA at 3.0 T for the diagnosis and therapeutic planning of patients with subarachnoid haemorrhage. Eur Radiol, 2012, 22(7): 1404-1412.
[10]
Shahzad R, Younas F. Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography. J Coll Physicians Surg Pak, 2011, 21(6): 325-329.
[11]
van Rooij WJ, Sluzewski M. Opinion: imaging follow-up after coiling of intracranial aneurysms. AJNR Am J Neuroradiol, 2009, 30(9): 1646-1648.
[12]
Campi A, Ramzi N, Molyneux AJ, et al. Retreatment of ruptured cerebral aneurysms in patients randomized by coiling or clipping in the International Subarachnoid Aneurysm Trial (ISAT). Stroke, 2007, 38(5):1538-1544.
[13]
Sprengers ME, Schaafsma JD, van Rooij WJ, et al. Evaluation of the occlusion status of coiled intracranial aneurysms with MR angiography at 3 T: is contrast enhancement necessary? AJNR Am J Neuroradiol, 2009, 30(9): 1665-1671.
[14]
Ferré JC, Carsin-Nicol B, Morandi X, et al. Time-of-flight MR angiography at 3 T versus digital subtraction angiography in the imaging follow-up of 51 intracranial aneurysms treated with coils. Eur J Radiol, 2009, 72(3): 365-369.
[15]
Kakeda S, Korogi Y, Hiai Y, et al. MRA of intracranial aneurysms embolized with platinum coils: a vascular phantom study at 1.5 T and 3 T. J MagnReson Imaging, 2008, 28(1): 13-20.
[16]
Urbach H, Dorenbeck U, von Falkenhausen M, et al. Three-dimensional time-of-flight MR angiography at 3 T compared to digital subtraction angiography in the follow-up of ruptured and coiled intracranial aneurysms: a prospective study. Neuroradiology, 2008, 50(5): 383-389.
[17]
Kaufmann TJ, Huston J 3rd, Cloft HJ, et al. A prospective trial of 3 T and 1.5 T time-of-flight and contrast-enhanced MR angiography in the follow-up of coiled intracranial aneurysms. AJNR Am J Neuroradiol, 2010, 31(5): 912-918.
[18]
Buhk JH, Kallenberg K, Mohr A, et al. No advantage of time-of-flight magnetic resonance angiography at 3 Tesla compared to 1.5 Tesla in the follow-up after endovascular treatment of cerebral aneurysms. Neuroradiology, 2008, 50(10): 855-861.
[19]
Choi JW, Roh HG, Moon WJ, et al. Time-resolved 3D contrast-enhanced MRA on 3.0 T: a non-invasive follow-up technique after stent-assisted coil embolization of the intracranial aneurysm. Korean J Radiol, 2011, 12(6): 662-670.
[20]
Gross BA, FrericksKU, Du R. Sensitivity of CT angiography,T2-weighted MRI, and magnetic resonance angiography in detecting cerebral arteriovenous malformations and associated aneurysms. J ClinNeurosci, 2012, 19(8): 1093-1095.
[21]
Heidenreich JO, Schiling AM, Unterharnscheidt F, et al. Assement of 3D-TOF-MRA at 3.0 Tesla in the characterization of the angioarchitecture of arteriovenousmalformations:apreliminary study. Acta Radiol, 2007, 48(6): 678-686.
[22]
Gauvrit JY, Oppenheim C, Nataf F, et al. Three-dimensional dynamic magnetic resonance angiography for the evaluation of radiosurgically treated cerebral arteriovenous malformations. Eur Radiol, 2006, 16(3): 583-591.
[23]
Lee KE, Choi CG, Choi JW, et al. Detection of residual brain arteriovenous malformation after radiosurgery: diagnostic accuracy of contrast-enhanced three-dimensional time of flight MR angiography at 3.0 Tesla. Korean J Radiol, 2009, 10(4): 333-339.
[24]
Chang W, Loecher MW, Wu Y, et al. Hemodynamic changes in patients with arteriovenous malformations assessed using high-resolution 3D radial phase-contrast MR angiography. AJNR Am J Neuroradiol, 2012, 33(8): 1565-1572.
[25]
Meckel S, Maier M, Ruiz DS, et al. MR angiography of duralarteriovenous fistulas: diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique. AJNR Am J Neuroradiol, 2007, 28(5): 877-884.
[26]
Lettau M, Laible M, Barrows RJ, et al. 3-T contrast-enhanced MR angiography with parallel imaging in cerebral venous and sinus thrombosis. J Neuroradiol, 2011, 38(5): 275-82.
[27]
Meckel S, Reisinger C, Bremerich J, et al. Cerebral venous thrombosis: diagnostic accuracy of combined, dynamic and static, contrast-enhanced 4D MR venography. AJNR Am J Neuroradiol, 2010, 31(3): 527-535.
[28]
Linn J, Michl S, Katja B, et al. Cortical vein thrombosis:the diagnostic value of different imaging modalities. Neuroradiology, 2010, 52(10): 899-911.
[29]
Hiwatashi A, Yoshiura T, Yamashita K, et al. High-resolution STIR for 3-T MRI of the posterior fossa: visualization of the lower cranial nerves and arteriovenous structures related to neurovascular compression. AJR Am J Roentgenol, 2012, 199(3): 644-648.
[30]
Letourneau-Guillon L, Krings T. Simultaneous arteriovenous shunting and venous congestion identification in dural arteriovenous fistulas using susceptibility-weighted imaging: initial experience. AJNR Am J Neuroradiol, 2012, 33(2): 301-307.
[31]
Zeng C, Chen X, Li Y, et al. Cerebral vein changes in relapsing-remitting multiple sclerosis demonstrated by three-dimensional enhanced T (2) (*)-weighted angiography at 3.0 T. Eur Radiol, 2012, 12 DOI: .

PREV The imaging diagnosis of rectoanal lesions
NEXT Compressed sensing technology and its application in MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn