Share:
Share this content in WeChat
X
Review
The research status and advance of functional MRI in amblyopia
XIAO Man-jun  LI Ya-jun  XIAO En-hua 

DOI:10.3969/j.issn.1674-8034.2013.06.014.


[Abstract] The fMRI not only can imaginate in human's brain tissue but also may reflect the functional activitiy of the certain region intuitively and without invation,so it developed rapidly in the study of the amblyopia. The Bold-fMRI can analyse the relationship between the transform of cortex funtion and visual impairment. DTI had offered the three-dimensional imagination of the brain white matter and neural pathway which the conventional MRI can't obtain. We can analyse the functional characteristics of nomal brain grey and white matter with several kinds of fMRI and study the function division of visual cortex,the functional impairment of cortex and the associated white cortex changement.This progress has provided useful mentality of discussing the functional lesion of primary and advanced visual cortex and the complicated neuropathology mechanism of connetion anomaly in visual pathway. This had offered useful reference in clinical diagnosis, treatment monitoring and prognosis.
[Keywords] Amblyopia;Cerebral cortex;Magnetic resonance imaging

XIAO Man-jun Department of Medical Imaging, 2nd Xiangya Hospital, Central South University, Changsha 410011, China

LI Ya-jun * Department of Medical Imaging, 2nd Xiangya Hospital, Central South University, Changsha 410011, China

XIAO En-hua Department of Medical Imaging, 2nd Xiangya Hospital, Central South University, Changsha 410011, China

*Correspondence to: Li YJ, E-mail: liyajun9966@aliyun.com

Conflicts of interest   None.

Received  2013-08-10
Accepted  2013-10-16
DOI: 10.3969/j.issn.1674-8034.2013.06.014
DOI:10.3969/j.issn.1674-8034.2013.06.014.

[1]
Miki A, Liu GT, Fletcher DW, et al. Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI. Pediatr Neurol, 2001, 24(3): 232-234.
[2]
Jia CH, Lu GM, Zhang ZQ, et al. Comparison of deficits in visual cortex between anisometropic and strabismic amblyopia by fMRI retinotopic mapping. Zhonghua Yi Xue Za Zhi, 2010, 90(21): 1446-1452.
[3]
Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res, 2007, 26(1): 38-56.
[4]
穆靓,杨健,鱼博浪.磁共振弥散加权及张量技术在新生儿缺血缺氧性脑病中的应用.磁共振成像, 2010, 1(1): 60-64.
[5]
Choi MY, Lee KM, Hwang JM, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol, 2001, 85(9): 1052-1056.
[6]
Hess RF. Amblyopia: site unseen. Clin Exp Optom, 2001, 84(6): 321-336.
[7]
Warnking J, Dojat M, Guerin-Dugue A, et al. fMRI retinotopic mapping--step by step. Neuroimage, 2002, 17(4): 1665-1683.
[8]
卢光明,张志强,黄伟,等.视觉皮层分区的功能MRI视网膜脑图.中华放射学杂志, 2007(10): 1045-1048.
[9]
梁平,张志强,卢光明,等.旋转光栅视觉刺激生理成分的功能MRI研究.中华放射学杂志, 2004, 37(1): 51-55.
[10]
Klaver P, Lichtensteiger J, Bucher K, et al. Dorsal stream development in motion and structure-from-motion perception. Neuroimage, 2008, 39(4): 1815-1823.
[11]
Makris N, Kaiser J, Haselgrove C, et al. Human cerebral cortex: a system for the integration of volume-and surface-based representations. Neuroimage, 2006, 33(1): 139-153.
[12]
杜寒剑,王健,黎川,等.经MRI研究屈光不正性弱视患儿枕叶皮质厚度.中华放射学杂志, 2008, 42(1): 47-49.
[13]
Xiao JX, Xie S, Ye JT, et al. Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry. Am J Ophthalmol, 2007, 143(3): 489-493.
[14]
Li Q, Jiang Q, Guo M, et al. Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study. Br J Ophthalmol, 2013, 97(4): 524-529.
[15]
Lv B, He H, Li X, et al. Structural and functional deficits in human amblyopia. Neurosci Lett, 2008, 437(1): 5-9.
[16]
杜寒剑,王健,谢兵,等.屈光不正性弱视枕叶灰质容积的MRI研究.中国医学影像技术, 2008, 24(2): 201-204.
[17]
Wang X, Cui D, Zheng L, et al. Combination of blood oxygen level-dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia. Mol Vis, 2012, 18: 909-919.
[18]
翁晓光,王惠南,张志强,等.基于fMRI的屈光参差性弱视静息视觉网络的研究.生物物理学报,2009, 25(6): 447-452.
[19]
Mantini D, Perrucci MG, Del GC, et al. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A, 2007, 104(32): 13170-13175.
[20]
Du H, Xie B, Yu Q, et al. Occipital lobe’s cortical thinning in ametropic amblyopia. Magn Reson Imaging, 2009, 27(5): 637-640.
[21]
Simmers AJ, Ledgeway T, Mansouri B, et al. The extent of the dorsal extra-striate deficit in amblyopia. Vision Res, 2006, 46(16): 2571-2580.
[22]
Barnes GR, Hess RF, Dumoulin SO, et al. The cortical deficit in humans with strabismic amblyopia. J Physiol, 2001, 533(Pt 1): 281-297.
[23]
Choi MY, Lee KM, Hwang JM, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol, 2001, 85(9): 1052-1056.
[24]
Hess RF, Thompson B, Gole G, et al. Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci, 2009, 29(5): 1064-1070.
[25]
Miki A, Liu GT, Goldsmith ZG, et al. Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica, 2003, 217(5): 365-369.
[26]
Brown B, Feigl B, Gole GA, et al. Assessment of neuroretinal function in a group of functional amblyopes with documented LGN deficits. Ophthalmic Physiol Opt, 2013, 33(2): 138-149.
[27]
Li H, Yang X, Gong Q, et al. BOLD responses to different temporospatial frequency stimuli in V1 and V2 visual cortex of anisometropic amblyopia. Eur J Ophthalmol, 2013, 23(2): 147-155.
[28]
Chen VJ, Tarczy-Hornoch K. Functional magnetic resonance imaging of binocular interactions in visual cortex in strabismus. J Pediatr Ophthalmol Strabismus, 2011, 48(6): 366-374.
[29]
谢兵,王健,李传明,等.儿童屈光参差性弱视的fMRI研究.临床放射学杂志, 2006, 25(11): 1055-1058.
[30]
Secen J, Culham J, Ho C, et al. Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Res, 2011, 51(23-24): 2517-2527.
[31]
Bonhomme GR, Liu GT, Miki A, et al. Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. J AAPOS, 2006, 10(6): 540-546.
[32]
Mendola JD, Conner IP, Roy A, et al. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp, 2005, 25(2): 222-236.
[33]
肖满意,徐静,李亚军,等.扩散张量成像对屈光参差性弱视儿童视觉通路白质结构的研究.眼科, 2009, 18(5): 315-320.
[34]
Yang CI, Yang ML, Huang JC, et al. Functional MRI of amblyopia before and after levodopa. Neurosci Lett, 2003, 339(1): 49-52.
[35]
Algaze A, Leguire LE, Roberts C, et al. The effects of L-dopa on the functional magnetic resonance imaging response of patients with amblyopia: a pilot study. J AAPOS, 2005, 9(3): 216-223.

PREV Research progress of magnetic resonance imaging in Parkinson disease
NEXT The research status of mucoid degeneration in anterior cruciate ligament
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn