Share:
Share this content in WeChat
X
Review
Research progress of rat brain glioma models
WANG Kai  CHEN Xu-zhu  DAI Jian-ping 

DOI:10.3969/j.issn.1674-8034.2014.01.015.


[Abstract] Rat brain glioma models are capable of simulating biological characters of human brain glioma and they are widely used in the field of occurrence, development, treatment and intervention of human brain glioma. The sort of study used rat brain glioma models is more than ever. This review is focused on the variety and general features of rat brain glioma models, as well as their research progress at home and abroad.
[Keywords] Glioma;Models animal;Magnetic resonance imaging

WANG Kai Imaging Center of Neuroscience, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

CHEN Xu-zhu Imaging Center of Neuroscience, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China

DAI Jian-ping* Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China

*Correspondence to: Dai JP, E-mail: Daijianping_2008@126.com

Conflicts of interest   None.

Received  2013-11-01
Accepted  2013-12-10
DOI: 10.3969/j.issn.1674-8034.2014.01.015
DOI:10.3969/j.issn.1674-8034.2014.01.015.

[1]
Doblas S, Saunders D, Kshirsagar P, et al. Phenyl-tert-butylnitrone induces tumor regression and decreases angiogenesis in a C6 rat glioma model. Free Radic Biol Med, 2008, 44(1): 63-72.
[2]
Grobben B, De Deyn PP, Slegers H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res, 2002, 310(3): 257-270.
[3]
Cretu A, Fotos JS, Little BW, et al. Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis, 2005, 22(3): 225-36.
[4]
戴建平,陈红艳.磁共振脉冲序列在中枢神经系统中的应用(一).磁共振成像, 2010, 1(3): 220-226.
[5]
Amharref N, Beljebbar A, Dukic S, et al. Brain tissue characterisation by infrared imaging in a rat glioma model. Biochim Biophys Acta, 2006, 1758(7): 892-899.
[6]
Parsa AT, Chakrabarti I, Hurley PT, et al. Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery, 2000, 47(4): 993-999.
[7]
Wang S, Chen Y, Lal B, et al. Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging. J Neurooncol, 2012, 107(1): 51-60.
[8]
Platten M, Wild-Bode C, Wick W, et al. N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-beta relesase and reduces migration and invasiveness of human malignant glioma cells. Int J Cancer, 2001, 93(1): 53-61.
[9]
Wild-Bode C, Weller M, Rimner A, et al. Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res, 2001, 61(6):2744-2750.
[10]
Zhang H, Kelly G, Zerillo C, et al. Expression of a cleaved brain-specific extracellular matrix protein mediates glioma cell invasion In vivo. J Neurosci, 1998, 18(7): 2370-2376.
[11]
Thomale UW, Tyler B, Renard V, et al. Neurological grading, survival, MR imaging, and histological evaluation in the rat brainstem glioma model. Childs Nerv Syst, 2009, 25(4): 433-441.
[12]
Barth RF. Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol, 1998, 36(1): 91-102.
[13]
Towner RA, Gillespie DL, Schwager A, et al. Regression of glioma tumor growth in F98 and U87 rat glioma models by the Nitrone OKN-007. Neuro Oncol, 2013, 15(3): 330-340.
[14]
Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol, 2009, 94(3): 299-312.
[15]
Sarkaria JN, Carlson BL, Schroeder MA, et al. Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response. Clin Cancer Res, 2006, 12(7Pt 1): 2264-2271.
[16]
Salhotra A, Lal B, Laterra J, et al. Amide proton transfer imaging of 9L gliosarcoma and human glioblastoma xenografts. NMR Biomed, 2008,21(5): 489-497.
[17]
Viapiano MS, Matthews RT, Hockfield S. A novel membrane-associated glycovariant of BEHAB/brevican is up-regulated during rat brain development and in a rat model of invasive glioma. J Biol Chem, 2003, 278(35): 33239-33247.
[18]
Banissi C, Ghiringhelli F, Chen L, et al. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother, 2009, 58(10): 1627-1634.
[19]
Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol, 2010, 223(1-2): 20-30.
[20]
Wang X, Duan X, Yang G, et al. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One, 2011,6(4): e18490.
[21]
Zhang J, van Zijl PC, Laterra J, et al. Unique patterns of diffusion directionality in rat brain tumors revealed by high-resolution diffusion tensor MRI. Magn Reson Med, 2007, 58(3): 454-462.
[22]
Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol, 2009, 94(3): 299-312.
[23]
洪新雨,罗毅男,崔佳乐,等.立体定向大鼠脑内SHG-44人脑胶质瘤模型的建立.吉林大学学报(医学版), 2004, (2): 224-226.
[24]
Cote J, Bovenzi V, Savard M, et al. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One, 2012, 7(5):e37485.
[25]
Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol, 2004, 70(2): 217-228.
[26]
Uhm JH, Dooley NP, Villemure JG, et al. Mechanisms of glioma invasion: role of matrix-metalloproteinases. Can J Neuro Sci, 1997,24(1): 3-15.
[27]
Zhang F, Xie J, Liu G, et al. In vivo MRI tracking of cell invasion and migration in a rat glioma model. Mol Imaging Biol, 2011, 13(4):695-701.
[28]
Pedersen PH, Edvardsen K, Garcia-Cabrera I, et al. Migratory patterns of lac-z transfected human glioma cells in the rat brain. Int J Cancer, 1995, 62(6): 767-771.
[29]
王晓武,李康樗,丁桂荣,等. SD大鼠与Wistar大鼠脑胶质瘤动物模型的建立及比较.中国比较医学杂志, 2010, (5): 8-11.
[30]
杨乐,杨小朋,陈刚.大鼠C6胶质瘤模型建立研究进展.现代肿瘤医学, 2013, (1): 212-214.
[31]
林健. C6大鼠胶质瘤模型及其在脑胶质瘤治疗研究中应用的缺陷.中华神经医学杂志, 2003, (2): 154-156.
[32]
林健,王伟民,徐如祥,等. 9L/Fischer344与C6/Wistar两种大鼠脑胶质瘤模型的比较研究.中华神经医学杂志, 2005, (5): 445-448.
[33]
林健,王伟民,徐如祥,等. 9L/F344与C6/Wistar大鼠脑胶质瘤模型局部细胞免疫反应的比较研究.中国微侵袭神经外科杂志, 2004,(9): 409-412.
[34]
马明平,吴光耀,周义成,等.大鼠C_6胶质瘤模型的磁共振成像及~1H波谱研究.放射学实践, 2004, (12): 913-916.
[35]
戴建平,沈慧聪,李少武.磁共振脉冲序列在中枢神经系统中的应用(二).磁共振成像, 2010, 1(4): 305-310.
[36]
Deng Z, Yan Y, Zhong D, et al. Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci, 2010, 17(12):1530-1536.
[37]
Kim S, Pickup S, Hsu O, et al. Diffusion tensor MRI in rat models of invasive and well-demarcated brain tumors. NMR Biomed, 2008,21(3): 208-216.
[38]
Lope-Piedrafita S, Garcia-Martin ML, Galons JP, et al. Longitudinal diffusion tensor imaging in a rat brain glioma model. NMR Biomed, 2008, 21(8): 799-808.
[39]
伍碧武,张义.弥散张量成像在大鼠脑胶质瘤模型中的应用.中国神经精神疾病杂志, 2012, (9): 557-560.
[40]
Wang TC, Hsiao IT, Cheng YK, et al. Noninvasive monitoring of tumor growth in a rat glioma model: comparison between neurological assessment and animal imaging. J Neurooncol, 2011, 104(3): 669-678.
[41]
Hatakeyama T, Kawai N, Nishiyama Y, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging, 2008, 35(11): 2009-2017.
[42]
陈骏.大鼠C6脑胶质瘤模型建立及MR灌注成像研究.合肥:安徽医科大学, 2002.
[43]
马明平,吴光耀,周义成,等.大鼠C6胶质瘤模型的磁共振成像及1H波谱研究.放射学实践, 2004, (12): 913-916.
[44]
李香营,魏晓,陈晶,等.大鼠C6脑胶质瘤晚期阶段模型MR成像及弥散张量研究.中国现代医学杂志, 2013, (11): 27-30.
[45]
伍碧武,张义.弥散张量成像在大鼠脑胶质瘤模型中的应用.中国神经精神疾病杂志, 2012, (9): 557-560.
[46]
李香营.大鼠C6脑胶质瘤3.0TMR-DTI及瘤周水肿浸润组织FA值与AQP1的相关性研究.长沙:中南大学, 2011.
[47]
胡婧,刘松青.羟基喜树碱缓释片瘤内植入对C6脑胶质瘤模型大鼠的肿瘤抑制作用研究.中国药房, 2011, (9): 818-820.
[48]
郅颖.三氧化二砷治疗大鼠脑9L胶质瘤的疗效评价[D].新乡:新乡医学院, 2012.
[49]
张煜辉.替莫唑胺缓释微球治疗大鼠C6胶质瘤的实验研究.上海:第二军医大学, 2008.
[50]
黄丙仓. 7T动物磁共振评价大鼠C6胶质瘤纳米药物疗效的实验研究.上海:复旦大学, 2010.
[51]
Wang X, Duan X, Yang G, et al. Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PloS one, 2011, 6(4):e18490.
[52]
刘剑.氩氦冷冻治疗荷9L胶质瘤鼠的疗效及其树突状细胞的初步研究.广州:南方医科大学, 2012.
[53]
李蓉,刘国龙,牛道立,等.建立大鼠C6/SD脑胶质瘤放射剂量效应模型的实验研究.解剖学研究, 2011, (1): 4-8.
[54]
李婧.低氧对大鼠胶质瘤生长影响的实验研究.昆明:昆明医科大学, 2012.
[55]
王建东,胡秋菊,朱飞鹏,等.铁蛋白与SPIO在磁共振细胞活体示踪中的增效作用.磁共振成像, 2010, 1(4): 299-304.
[56]
Ahmed AU, Tyler MA, Thaci B, et al. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm, 2011, 8(5): 1559-1572.
[57]
Harter PN, Dutzmann S, Drott U, et al. Anti-tissue factor (TF9-10H10) treatment reduces tumor cell invasiveness in a novel migratory glioma model. Neuropathology, 2013, 33(5): 515-525.
[58]
Joshi AD, Loilome W, Siu IM, et al. Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy. PloS one, 2012,7(10): e44372.
[59]
Zhao D, Stafford JH, Zhou H, et al. Near-infrared Optical Imaging of Exposed Phosphatidylserine in a Mouse Glioma Model. Transl Oncol, 2011, 4(6): 355-364.
[60]
Gambini E, Reisoli E, Appolloni I, et al. Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol Ther, 2012, 20(5): 994-1001.
[61]
Farrar CT, Kamoun WS, Ley CD, et al. Sensitivity of MRI tumor biomarkers to VEGFR inhibitor therapy in an orthotopic mouse glioma model. PloS one, 2011, 6(3): e17228.
[62]
Stedt H, Alasaarela L, Samaranayake H, et al. Specific inhibition of SRC kinase impairs malignant glioma growth in vitro and in vivo. Mol Ther Nucleic Acids, 2012, 1: e19.
[63]
Sai KK, Huang C, Yuan L, et al. 18F-AFETP, 18F-FET, and 18F-FDG imaging of mouse DBT gliomas. J Nucl Med, 2013, 54(7): 1120-1126.
[64]
Fillmore HL, Shurm J, Furqueron P, et al. An in vivo rat model for visualizing glioma tumor cell invasion using stable persistent expression of the green fluorescent protein. Cancer Lett, 1999, 141(1-2): 9-19.
[65]
Zhang F, Xie J, Liu G, et al. In vivo MRI tracking of cell invasion and migration in a rat glioma model. Mol Imaging Biol, 2011, 13(4):695-701.
[66]
Cretu A, Fotos JS, Little BW, et al. Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis, 2005, 22(3): 225-236.
[67]
Thomale UW, Tyler B, Renard V, et al. Neurological grading, survival, MR imaging, and histological evaluation in the rat brainstem glioma model. Childs Nerv Syst, 2009, 25(4): 433-441.
[68]
Amharref N, Beljebbar A, Dukic S, et al. Brain tissue characterisation by infrared imaging in a rat glioma model. Biochim Biophys Acta, 2006, 1758(7): 892-899.

PREV Cardiovascular magnetic resonance imaging: Part IV——The comparison of imaging features of cardiovascular magnetic resonance scanners with different field strength
NEXT Olfactory deficit detected by fMRI in vascular dementia patients
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn