Share:
Share this content in WeChat
X
Review
Marrow fat quantification by magnetic resonance technology: the aplication and prospect in bone diseases
CHEN Hui-ying  YUAN Hui-shu 

DOI:10.3969/j.issn.1674-8034.2014.02.014.


[Abstract] Fat occupies a significant portion of bone cavity and is one of the important factors which affect the bone marrow microenvironment. Various physiological or pathological changes of the bone marrow are closely related with the fat content thus we may detect the bone marrow lesions or evaluate its functional status by quantifying bone marrow fat with certain magnetic resonance methods. This paper reviewed the applicationgs in bone diseases different MR techniques for bone adipose tissue measurement in recent decades, and the application prospect of this technology is forecasted.
[Keywords] Bone marrow;Adipose tissue;Magnetic resonance imaging;Bone disease

CHEN Hui-ying Deparment of Radiology, Peking University Third Hospital, Beijing, 100191, China

YUAN Hui-shu Deparment of Radiology, Peking University Third Hospital, Beijing, 100191, China

Conflicts of interest   None.

Received  2013-12-27
Accepted  2014-02-08
DOI: 10.3969/j.issn.1674-8034.2014.02.014
DOI:10.3969/j.issn.1674-8034.2014.02.014.

[1]
Gimble JM. The function of adipocytes in the bone marrow stroma. New Biologist, 1990, 2(4): 304-312.
[2]
Gimble JM, Robinson CE, Wu X, et al. The function of adipocytes in the bone marrow stroma: an update. Bone, 1996, 19(5): 421-428.
[3]
Beresford JN, Bennett JH, Devlin C, et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Science, 1992, 102(2):341-351.
[4]
Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001,19(3): 180-192.
[5]
Oreffo RO, Cooper C, Mason C, et al. Mesenchymal stem cells. Stem Cell Rev, 2005, 1(2): 169-178.
[6]
Rosen CJ, Ackert-Bicknell C, Rodriguez J P, et al. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr, 2009, 19(2): 109-124.
[7]
Cornish J, MacGibbon A, Lin JM, et al. Modulation of osteo-clastogenesis by fatty acids. Endocrinology, 2008, 149(11): 5688-5695.
[8]
Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 2009, 460(7252): 259-263.
[9]
Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells in haemopoiesis. Blood Rev, 2006, 20(3): 161-171.
[10]
Kawai M, de Paula FJ, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Int Med, 2012, 272(4): 317-329.
[11]
Krings A, Rahman S, Huang S, et al. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone, 2012, 50(2): 546-552.
[12]
Shen W, Chen J, Punyanitya M, et al. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int, 2007, 18(5): 641-647.
[13]
Shen W, Chen J, Gantz M, et al. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older adults. European J Clin Nutrit, 2012, 66(9):983-988.
[14]
Shen W, Gong XQ, Weiss J, et al. Comparison among T1-Weighted magnetic resonance imaging,modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat. J Obesity, 2013: 298675.
[15]
Layer G, Traber F, Block W, et al. 1H MR spectroscopy of the lumbar spine in diffuse osteopenia due to plasmacytoma or osteoporosis. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr, 1998, 169(6):596-600.
[16]
Schwartz AV, Sigurdsson S, Hue TF, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab, 2013, 98(6): 2294-300.
[17]
Schellinger D, Lin CS, Hatipoglu HG, et al. Potential value of vertebral proton MR spectroscopy in determining bone weakness. Am J Neuroradiol, 2001, 22(8): 1620-1627.
[18]
李冠武,常时新,鲍红,等.骨髓脂肪含量对预测骨质疏松性椎体骨折风险的初步应用.实用放射学杂志, 2012, 28(1): 74-77.
[19]
Hollak C, Maas M, Akkerman E, et al. Dixon quantitative chemical shift imaging is a sensitive tool for the evaluation of bone marrow responses to individualized doses of enzyme supplementation therapy in type 1 Gaucher disease. Blood Cells Mol Dis, 2001, 27(6):1005-1012.
[20]
Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med, 2005,54(3): 636-644.
[21]
Reeder SB, Wen Z, Yu H, et al. Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med, 2004, 51(1): 35-45.
[22]
Yu H, Shimakawa A, Hines CD, et al. Combination of complex-based and magnitude-based multiecho water-fat separation for accurate quantification of fat-fraction. Magn Reson Med, 2011, 66(1): 199-206.
[23]
Meisamy S, Hines CD, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology, 2011, 258(3): 767-775.
[24]
Pichardo JC, Milner RJ, Bolch WE. MRI measurement of bone marrow cellularity for radiation dosimetry. J Nuclear Med, 2011,52(9): 1482-1489.
[25]
Peck WA, Burckhardt P, Christiansen C, et al. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med, 1993, 94(6): 646-650.
[26]
秦岭,张戈.美国国家卫生院有关骨质疏松症的预防、诊断和治疗的共识文件(译文).中国骨质疏松杂志, 2002, 8(1): 90-93.
[27]
WHO Study Group on Assessment of Fracture Risk, its Application to Screening for Postmenopausal Osteoporosis. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organization, 1994.
[28]
程晓光,刘忠厚.国际临床骨密度学会共识文件(2005年版).中国骨质疏松杂志, 2006, 12(2): 205-209.
[29]
Schuit SC, Van der Klift M, Weel A, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone, 2004, 34(1): 195-202.
[30]
Adams JE. Quantitative computed tomography. Eur J Radiol, 2009,71(3): 415-424.
[31]
Lochmüller EM, Bürklein D, Kuhn V, et al. Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone, 2002, 31(1): 77-84.
[32]
于爱红,陈祥述,孙伟杰,等.体重、身高及体重指数与双能X线骨密度仪和定量CT测量腰椎骨密度的关系.中国医学影像学杂志, 2011, 12(9): 909-911.
[33]
Boutrey S, Bouxsein ML, Munoz F. et a1. In vivo assessment of trabeeular bone microarehitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metsb, 2005,90(12): 6508-6515.
[34]
Mittra E, Rubin C, Gruber B, et al. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, μCT, and DXA. J Biomechanics, 2008,41(2): 368-375.
[35]
史勇. HRMRI评价骨质疏松症及其治疗结果的研究.苏州:苏州大学, 2005.
[36]
Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2001, 2(3): 165-171.
[37]
Schellinger D, Lin CS, Lim J, et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol, 2004, 183(6): 1761-1765.
[38]
Bredella MA, Torriani M, Ghomi RH, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity, 2011, 19(1): 49-53.
[39]
Von Muhlen D, Safii S, Jassal SK, et al. Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteopor Int, 2007, 18(10): 1337-1344.
[40]
Miyanishi K, Yamamoto T, Irisa T, et al. Bone marrow fat cell enlargement and a rise in intraosseous pressure in steroid-treated rabbits with osteonecrosis. Bone, 2002, 30(1): 185-190.
[41]
Motomura G, Yamamoto T, Miyanishi K, et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis: a histomorphometric study of autopsy cases. Pathol Res Pract, 2005,200(11): 807-811.
[42]
Li GW, Xu Z, Chen QW, et al. The temporal characterization of marrow lipids and adipocytes in a rabbit model of glucocorticoid-induced osteoporosis. Skeletal Radiol, 2013, 42(9): 1235-1244.
[43]
Li GW, Chang SX, Fan JZ, et al. Marrow adiposity recovery after early zoledronic acid treatment of glucocorticoid-induced bone loss in rabbits assessed by magnetic resonance spectroscopy. Bone, 2013,52(2): 668-675.
[44]
Heim M, Frank O, Kampmann G, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology, 2004, 145(2): 848-859.
[45]
Liu Y, Tang G, Tang R, et al. Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J (English Edition), 2010, 123(12): 1524.
[46]
Syed FA, Oursler MJ, Hefferanm TE, et al. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteopor Int, 2008, 19(9): 1323-1330.
[47]
王海燕.内科学.北京:北京大学医学出版社, 2005: 832-835,884-939.
[48]
Xu L, Chen Y, He GW, et al. Magnetic resonance imaging and spectroscopy of the bone marrow in children with common hematological diseases. Zhonghua Yi Xue Za Zhi, 2012, 92(9):587-591.
[49]
Beutler E. Gaucher disease. Adv Genet, 1995, 32: 17-49.
[50]
Stowens DW, Teitelbaum SL, Kahn AJ, et al. Skeletal complications of Gaucher disease. Medicine, 1985, 64(5): 310-322.
[51]
Barton NW, Brady RO, Dambrosia JM, et al. Replacement therapy for inherited enzyme deficiency: macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med, 1991, 324(21): 1464-1470.

PREV One case report for huge myxoma of thigh
NEXT Statistical analyses most commonly used in SCI-indexed journals of radiology
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn