Share:
Share this content in WeChat
X
Review
The application of magnetic resonance cell tracing technique in myocardial infarction cell transplantation treatment
CUI Chen  ZHAO Shi-hua 

DOI:10.3969/j.issn.1674-8034.2014.03.015.


[Abstract] Stem cell transplantation has the potential to treat myocardial infarction. MRI is emerging as a robust tool to provide anatomical and functional information of patient with cardiovascular disease, but also plays an important role in tracing graft cells. SPIO is one of the most widely used probes, which can identify the graft site accurately. However, the presence of SPIO cannot guarantee the survival of the stem cells and this limits its use. The MRI reporter gene imaging technique can fill this gap to access the survival information of the grafted cells and help researchers to achieve a higher level of understanding of the fate of the cell.
[Keywords] Magnetic resonance imaging;super paramagnetic iron oxide;Reporter gene imaging

CUI Chen Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 10037, China

ZHAO Shi-hua* Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital and Cardiovascular Institute, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 10037, China

*Correspondence to: Zhao SH, E-mail: cjrzhaoshihua2009@163.com

Conflicts of interest   None.

Received  2014-01-20
Accepted  2014-02-26
DOI: 10.3969/j.issn.1674-8034.2014.03.015
DOI:10.3969/j.issn.1674-8034.2014.03.015.

[1]
Ala A. Global status report on noncommunicable disaeses 2010. Geneva: WHO, 2011: 7.
[2]
Karasek J, Widimsky P, Ostadal P, et al. Acute heart failure registry from high-volume university hospital ED: comparing European and US data. Am J Emerg Med, 2012, 30(5): 695-705.
[3]
Duran JM, Makarewich CA, Sharp TE, et al. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res, 2013, 113(5): 539-552.
[4]
Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med, 2004, 10(5): 494-501.
[5]
Telukuntla KS, Suncion VY, Schulman IH, et al. The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc, 2013, 2(5): e000338-e000338.
[6]
Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A, 2009, 106(33): 14022-14027.
[7]
Zhang H, Chen H, Wang W, et al. Cell survival and redistribution after transplantation into damaged myocardium. J Cell Mol Med, 2010, 14(5): 1078-1082.
[8]
Li Z, Suzuki Y, Huang M, et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells, 2008, 26(4): 864-873.
[9]
Ye Y, Bogaert J. Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol, 2008, 18(3): 548-569.
[10]
Kraitchman DL, Kedziorek DA, Bulte JW. MR imaging of transplanted stem cells in myocardial infarction. Methods Mol Biol, 2011, 680: 141-152.
[11]
Ittrich H, Peldschus K, Raabe N, et al. Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. Rofo, 2013, 185(12):1149-1166.
[12]
Landazuri N, Tong S, Suo J, et al. Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles. Small, 2013, 9(23): 4017-4026.
[13]
Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 2003, 107(18): 2290-2293.
[14]
Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation, 2003, 108(8): 1009-1014.
[15]
Stuckey DJ, Carr CA, Martin-Rendon E, et al. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells, 2006, 24(8): 1968-1975.
[16]
Lu M, Zhao S, Liu Q, et al. Transplantation with autologous mesenchymal stem cells after acute myocardial infarction evaluated by magnetic resonance imaging: an experimental study. J Thorac Imaging, 2012, 27(2): 125-135.
[17]
曹剑,王怡宁,孔令燕,等.活体MR成像监测移植干细胞治疗SD大鼠心肌梗死并评价左心功能的可行性研究.磁共振成像, 2011, 2(5): 337-342.
[18]
Carr CA, Stuckey DJ, Tatton L, et al. Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. Am J Physiol Heart Circ Physiol, 2008, 295(2): 533-542.
[19]
Yang Y, Schumacher A, Yang Y, et al. Monitoring bone marrow-originated mesenchymal stem cell traffic to myocardial infarction sites using magnetic resonance imaging. Magn Reson Med, 2011, 65(5): 1430-1436.
[20]
Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 2005, 112(10): 1451-1461.
[21]
Amsalem Y, Mardor Y, Feinberg MS, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 2007, 116(11Suppl): 38-45.
[22]
Terrovitis J, Stuber M, Youssef A, et al. Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation, 2008, 117(12): 1555-1562.
[23]
Winter EM, Hogers B, Van Der Graaf LM, et al. Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart. Magn Reson Med, 2010, 63(3): 817-821.
[24]
Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn Reson Med, 2004, 52(5): 1214-1219.
[25]
Chen IY, Greve JM, Gheysens O, et al. Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for noninvasive imaging of cardiac cell transplantation. Mol Imaging Biol, 2009, 11(3): 178-187.
[26]
Qiao H, Zhang H, Zheng Y, et al. Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology, 2009, 250(3): 821-829.
[27]
Zhang H, Qiao H, Bakken A, et al. Utility of dual-modality bioluminescence and MRI in monitoring stem cell survival and impact on post myocardial infarct remodeling. Acad Radiol, 2011, 18(1): 3-12.
[28]
Yang K, Xiang P, Zhang C, et al. Magnetic resonance evaluation of transplanted mesenchymal stem cells after myocardial infarction in swine. Can J Cardiol, 2011, 27(6): 818-825.
[29]
Khurana A, Chapelin F, Beck G, et al. Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology, 2013, 269(1): 186-197.
[30]
Mani V, Adler E, Briley-Saebo KC, et al. Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med, 2008, 60(1): 73-81.
[31]
Josephson L, Tung CH, Moore A, et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem, 1999, 10(2): 186-191.
[32]
Naumova AV, Reinecke H, Yarnykh V, et al. Ferritin overexpression for noninvasive magnetic resonance imaging-based tracking of stem cells transplanted into the heart. Mol Imaging, 2010, 9(4): 201-210.
[33]
Naumova AV, Yarnykh VL, Balu N, et al. Quantification of MRI signal of transgenic grafts overexpressing ferritin in murine myocardial infarcts. NMR Biomed, 2012, 25(10): 1187-1195.
[34]
Chung J, Kee K, Barral JK, et al. In vivo molecular MRI of cell survival and teratoma formation following embryonic stem cell transplantation into the injured murine myocardium. Magnetic resonance in medicine. Magn Reson Med, 2011, 66(5): 1374-1381.

PREV Application progress of 1H-MRS in temporal lobe epilepsy
NEXT Functional magnetic resonance imaging of the lower spinal cord
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn