Share:
Share this content in WeChat
X
Review
Research progress in bio-responsive MRI contrast agent
ZENG Qi  WANG Tian-yu  TANG Jian-bin 

DOI:10.3969/j.issn.1674-8034.2014.05.014.


[Abstract] Different tissues and diseases have specific biological signals. The development of magnetic resonance imaging (MRI) contrast agents responding to these signals can not only improve the sensitivity of disease detection by MRI, but also increase the accuracy of disease diagnosis through molecular imaging of these disease signals. This paper gives a review of MRI contrast agents responding to albumin, pH, metal ion, enzyme, redox and other biological signals with the focus on the latest developments and perspectives.
[Keywords] Magnetic resonance imaging;Contrast media

ZENG Qi Department of Chemical and Biological Engineering, Center for Bioengineering, Zhejiang University, Hangzhou 310027, China

WANG Tian-yu Department of Chemical and Biological Engineering, Center for Bioengineering, Zhejiang University, Hangzhou 310027, China

TANG Jian-bin* Department of Chemical and Biological Engineering, Center for Bioengineering, Zhejiang University, Hangzhou 310027, China

*Correspondence to: Tang JB, E-mail: jianbin@zju.edu.cn

Conflicts of interest   None.

Received  2014-05-13
Accepted  2014-06-08
DOI: 10.3969/j.issn.1674-8034.2014.05.014
DOI:10.3969/j.issn.1674-8034.2014.05.014.

[1]
Aime S, Crich SG, Gianolio E, et al. High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev, 2006, 250(11-12): 1562-1579.
[2]
Yan GP, Robinson L, Hogg P. Magnetic resonance imaging CAs: overview and perspectives. Radiography, 2007, 13: e5-e19.
[3]
Ye F, Jeong EK, Parker D, et al. Evaluation of CLT1-(Gd-DTPA) for MR molecular imaging in a mouse breast cancer mpdel. Chin J Magn Imaging, 2011, 02(5): 325-330.
[4]
张水兴,刘于宝.肝脏磁共振对比剂的过去、现在和未来.磁共振成像, 2012, 03(1): 56-60.
[5]
Weinmann HJ, Ebert W, Misselwitz B, et al. Tissue-specific MR contrast agents. Eur J Radiol, 2003, 46(1): 33-44.
[6]
Kiessling F, Morgenstern B, Zhang C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr Med Chem, 2007, 14(1): 77-91.
[7]
Zhang SR, Wu KC, Sherry AD. A novel pH-sensitive MRI contrast agent. Angew Chem Int Edi, 1999, 38(21): 3192-3194.
[8]
Alves FC, Donato P, Sherry AD, et al. Silencing of phosphonate-gadolinium magnetic resonance Imaging contrast by hydroxyapatite binding. Invest Radiol, 2003, 38(12): 750-760.
[9]
Caravan P, Greenwood JM, Welch JT, et al. Gadolinium-binding helix-turn-helix peptides: DNA-dependent MRI contrast agents. Chem Commun, 2003, (20): 2574-2575.
[10]
Fossheim SL, Il’ yasov KA, Hennig J, et al. Thermosensitive paramagnetic liposomes for temperature control during MR imaging-guided hyperthermia: in vitro feasibility studies. Acad Radiol, 2000, 7(12): 1107-1115.
[11]
俞开潮,吕志勇,姚瑶,等.生物激活磁共振成像对比剂的研究进展.波谱学杂志, 2010, 27(3): 355-368.
[12]
Davies GL, Kramberger I, Davis JJ. Environmentally responsive MRI contrast agents. Chem Commun, 2013, 49(84): 9704-9721.
[13]
Caravan P, Cloutier NJ, Greenfield MT, et al. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc, 2002, 124(12): 3152-3162.
[14]
Uggeri F, Aime S, Anelli PL, et al. Novel contrast agents for magnetic-resonance-imaging-synthesis and characterization of the ligand bopta and its Ln(Iii) complexes (Ln=Gd, La, Lu)-X-ray structure of disodium (Tps-9-145337286-C-S)-[4-Carboxy-5,8,11-Tris(Carboxymethyl)-1-Phenyl-2-Oxa-5, 8, 11-triazatridecan-13-Oato(5-)] gadolinate(2-) in a mixture with its enantiomer. Inorg Chem, 1995, 34(3): 633-642.
[15]
Lewin M, Clement O, Belguise-Valladier P, et al. Hepatocyte targeting with Gd-EOB-DTPA-Potential application for gene therapy. Invest Radiol, 2001, 36(1): 9-14.
[16]
Lee GH, Chang Y, Kim TJ. Blood-pool and targeting mri contrast agents: from Gd-chelates to Gd-nanoparticles. Eur J Inorg Chem, 2012, (12): 1924-1933.
[17]
孙晓明,唐建斌,隋梅花,等. pH响应的磁共振成像对比剂的研究进展.化学通报, 2012, 75(1): 21-26.
[18]
Giardiello M, Botta M, Lowe MP. pH-Responsive Lanthanide complexes based on reversible ligation of a diphenylphosphinamide. Inorg Chem, 2013, 52(24): 14264-14269.
[19]
Giovenzana GB, Negri R, Rolla GA, et al. Gd-aminoethyl-DO3A complexes: a novel class of pH-sensitive MRI contrast agents. Eur J Inorg Chem, 2012, (12): 2035-2039.
[20]
Nwe K, Huang CH, Tsourkas A. Gd-labeled glycol chitosan as a pH-responsive magnetic resonance imaging agent for detecting acidic tumor microenvironments. J Med Chem, 2013, 56(20): 7862-7869.
[21]
Kim KS, Park W, Hu J, et al. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials, 2014, 35(1): 337-343.
[22]
Que EL, Chang CJ. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem Soc Rev, 2010, 39(1): 51-60.
[23]
Yang CT, Chuang KH. Gd(III) chelates for MRI contrast agents: from high relaxivity to "smart" , from blood pool to blood-brain barrier permeable. Med Chem Comm, 2012, 3(5): 552-565.
[24]
Que EL, New EJ, Chang CJ. A cell-permeable gadolinium contrast agent for magnetic resonance imaging of copper in a Menkes disease model. Chem Sci, 2012, 3(6): 1829-1834.
[25]
Li WS, Luo JA, Chen ZN. A gadolinium(III) complex with 8-amidequinoline based ligand as copper(II) ion responsive contrast agent. Dalton T, 2011, 40(2): 484-488.
[26]
Mishra A, Logothetis NK, Parker D. Critical in vitro evaluation of responsive mri contrast agents for calcium and zinc. Chem Eur J, 2011, 17(5): 1529-1537.
[27]
Luo J, Li WS, Xu P, et al. Zn2+ responsive bimodal magnetic resonance imaging and fluorescent imaging probe based on a gadolinium(III) complex. Inorg Chem, 2012, 51(17): 9508-9516.
[28]
Giardiello M, Lowe MP, Botta M. An esterase-activated magnetic resonance contrast agent. Chem Commun, 2007, (39): 4044-4046.
[29]
Aswendt M, Gianolio E, Pariani G, et al. In vivo imaging of inhibitory, GABAergic neurons by MRI. Neuroimage, 2012, 62(3): 1685-1693.
[30]
Napolitano R, Pariani G, Fedeli F, et al. Synthesis and relaxometric characterization of a MRI Gd-based probe responsive to glutamic acid decarboxylase enzymatic activity. J Med Chem, 2013, 56(6): 2466-2477.
[31]
Chauvin T, Torres S, Rosseto R, et al. Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging. Chem Eur J, 2012, 18(5): 1408-1418.
[32]
Figueiredo S, Moreira JN, Geraldes CF, et al. Supramolecular protamine/Gd-loaded liposomes adducts as relaxometric protease responsive probes. Bioorgan Med Chem, 2011, 19(3): 1131-1135.
[33]
Rolla GA, Tei L, Fekete M, et al. Responsive Mn(II) complexes for potential applications in diagnostic magnetic resonance imaging. Bioorgan Med Chem, 2011, 19(3): 1115-1122.
[34]
Hoye AT, Davoren JE, Wipf P, et al. Targeting mitochondria. Accounts Chem Res, 2008, 41(1): 87-97.
[35]
Tu CQ, Osborne EA, Louie AY. Synthesis and characterization of a redox- and light-sensitive MRI contrast agent. Tetrahedron, 2009, 65(7): 1241-1246.
[36]
Tu C, Nagao R, Louie AY. Multimodal magnetic-resonance/ optical-imaging contrast agent sensitive to NADH. Angew Chem Int Edit, 2009, 48(35): 6547-6551.
[37]
Raghunand N, Guntle GP, Gokhale V, et al. Design, synthesis, and evaluation of 1, 4, 7, 10-tetraazacyclododecane-1,4,7-triacetic acid derived, redox-sensitive contrast agents for magnetic resonance imaging. J Med Chem, 2010, 53(18): 6747-6757.
[38]
Jagadish B, Guntle GP, Zhao D, et al. Redox-active magnetic resonance imaging contrast agents: studies with thiol-bearing 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid derivatives. J Med Chem, 2012, 55(23): 10378-10386.
[39]
Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, et al. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small, 2011,7(24): 3519-3528.
[40]
Iwaki S, Hanaoka K, Piao W, et al. Development of hypoxia-sensitive Gd3+-based MRI contrast agents. Bioorg Med Chem Lett, 2012, 22(8): 2798-2802.
[41]
Aime S, Botta M, Gianolio E, et al. A p(O-2)-responsive MRI contrast agent based on the redox switch of manganese(II/III) - porphyrin complexes. Angew Chem Int Edi, 2000, 39(4): 747-750.
[42]
Hernandez G, Bryant RG. Proton magnetic-relaxation of manganese(Ii) tetrakis(4-sulfophenyl)porphine ion in water. Bioconjugate Chem, 1991, 2(6): 394-397.
[43]
Burai L, Scopelliti R, Tóth E. Eu-II-cryptate with optimal water exchange and electronic relaxation: a synthon for potential pO(2) responsive macromolecular MRI contrast agents. Chem Commun (Camb). 2002, (20): 2366-2367.
[44]
Sun PZ, Schoening ZB, Jasanoff A. In vivo oxygen detection using exogenous hemoglobin as a contrast agent in magnetic resonance microscopy. Magn Reson Med, 2003, 49(4): 609-614.
[45]
Xu W, Lu Y. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. Chem Commun, 2011, 47(17): 4998-5000.
[46]
Zhang SR, Trokowski R, Sherry AD. A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc, 2003,125(50): 15288-15289.
[47]
Aime S, Delli Castelli D, Fedeli F, et al. A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc, 2002, 124(32): 9364-9365.
[48]
Liu G, Li Y, Pagel MD. Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magn Reson Med, 2007, 58(6): 1249-1256.

PREV One case report for carpal multiple aseptic necrosis
NEXT The present situation of pulmonary embolism magnetic resonance imaging
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn